Web-based Supplementary Materials for "Semiparametric Mixed-effects Ordinary Differential Equation Models with Heavy-tailed Distributions"

S1 The MCMC algorithm

We use the Markov chain Monte Carlo (MCMC) method which consists of the Metropolis-Hastings algorithm and the Gibbs sampling method to sample the parameters θ_i , ξ , ζ , Σ , σ_{ϵ}^{-2} , U_i , W_i , λ_{η} , ν and κ . In this appendix, the symbol $\|\mathbf{a}\|_{\mathbf{A}}^2$ denotes $\mathbf{a}^T\mathbf{A}\mathbf{a}$ for the vector \mathbf{a} and the matrix \mathbf{A} . When $\mathbf{A} = \mathbf{I}$, a symbol $\|\mathbf{a}\|^2$ is used instead. Define $\mathbf{X}_i = (X_i(t_{i1}),...,X_i(t_{in_i}))^T$, i=1,...,n. The full conditional distributions for θ_i , ξ , ζ , Σ , σ_{ϵ}^{-2} , U_i , W_i , λ_{η} , ν and κ are displayed as follows (where \sim denotes all variables except the one to be sampled):

(a) Full conditional distributions of θ_i for i = 1, ..., n.

$$p(\boldsymbol{\theta}_i|\sim) \propto \exp\left\{-\frac{U_i}{2\sigma_{\epsilon}^2}\|\mathbf{Y}_i - \mathbf{X}_i\|^2\right\} \exp\left\{-\frac{W_i}{2}\|\boldsymbol{\theta}_i - \boldsymbol{\xi}\|_{\boldsymbol{\Sigma}^{-1}}^2\right\}.$$

Since that the solution $X_i(t)$ generally does not have an explicit expression, the full conditional distribution for θ_i does not have closed form. We apply the Metropolis-Hastings method to sample θ_i . Generally, the initial conditions $X_i(0)$'s are rarely known. We incorporate them into θ_i to be estimated from the noisy data. It is well known that the convergence efficiency of the traditional Metropolis-Hastings algorithm can be improved if the proposals are adapted properly. Let $\theta_i^{(k)}$ be the sample of θ_i at the kth iteration. Then at iteration (k+1), the proposal distribution used in the MH algorithm is $N\left(\theta_i^{(k)}, s_d[\mathbf{C}_i^{(k)} + \varrho \mathbf{I}_{p+1}]\right)$, where $\mathbf{C}_i^{(k)}$ is updated by (Liang, Liu and Carroll, 2010)

$$\mathbf{C}_i^{(k+1)} = \mathbf{C}_i^{(k)} + \tilde{\gamma}_{k+1} [(\boldsymbol{\theta}_i^{(k+1)} - \tilde{\boldsymbol{\mu}}_i^{(k)}) (\boldsymbol{\theta}_i^{(k+1)} - \tilde{\boldsymbol{\mu}}_i^{(k)})^T - \mathbf{C}_i^{(k)}],$$

and $ilde{oldsymbol{\mu}}_i^{(k)}$ is updated by

$$\tilde{\boldsymbol{\mu}}_i^{(k+1)} = \tilde{\boldsymbol{\mu}}_i^{(k)} + \tilde{\gamma}_{k+1} (\boldsymbol{\theta}_i^{(k+1)} - \tilde{\boldsymbol{\mu}}_i^{(k)}).$$

The gain factor sequence $\{\tilde{\gamma}_k\}$ satisfy the conditions of $\sum_{k=1}^{\infty} \tilde{\gamma}_k = \infty$ and $\sum_{k=1}^{\infty} \tilde{\gamma}_k^{1+\delta_0} < \infty$ for some $\delta_0 \in (0,1]$. s_d is used for tuning the acceptance rate and a very small ϱ is chosen to avoid the singularity of the covariance matrix.

(b) Full conditional distribution of ζ .

$$p(\zeta|\sim) \propto \exp\left\{-\frac{1}{2\sigma_{\epsilon}^2} \sum_{i=1}^n U_i \|\mathbf{Y}_i - \mathbf{X}_i\|^2\right\} \exp\left\{-\frac{\lambda_{\eta}}{2} \|\mathbf{D}_2 \zeta\|^2\right\},$$

which is not the standard distribution. It is sampled by the Metropolis-Hastings algorithm.

(c) Full conditional distributions of ξ and Σ .

$$p(\boldsymbol{\xi}|\sim) \propto \prod_{i=1}^{n} \exp\left\{-\frac{W_{i}}{2} \|\boldsymbol{\theta}_{i} - \boldsymbol{\xi}\|_{\boldsymbol{\Sigma}^{-1}}^{2}\right\} \exp\left\{-\frac{1}{2} \|\boldsymbol{\xi} - \boldsymbol{\xi}_{0}\|_{\boldsymbol{\Omega}_{0}}^{2}\right\},$$

$$p(\boldsymbol{\Sigma}|\sim) \propto |\boldsymbol{\Sigma}|^{-n/2} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} W_{i} \|\boldsymbol{\theta}_{i} - \boldsymbol{\xi}\|_{\boldsymbol{\Sigma}^{-1}}^{2}\right\} |\boldsymbol{\Sigma}|^{-(df+q+1)/2} \exp\left\{-\frac{1}{2} \operatorname{tr}(\mathbf{S}_{0} \boldsymbol{\Sigma}^{-1})\right\}.$$

Then the full conditional posterior distribution of $\boldsymbol{\xi}$ is a multivariate normal distribution with mean vector $\boldsymbol{\mu}_{\boldsymbol{\xi}} = \mathbf{B}(\sum_{i=1}^n W_i \boldsymbol{\Sigma}^{-1} \boldsymbol{\theta}_i + \boldsymbol{\Omega}_0 \boldsymbol{\xi}_0)$ and covariance matrix $\mathbf{B} = (\sum_{i=1}^n W_i \boldsymbol{\Sigma}^{-1} + \boldsymbol{\Omega}_0)^{-1}$. The full conditional posterior distribution of $\boldsymbol{\Sigma}$ is an Inverse Wishart distribution with the scale matrix $\mathbf{S}_0 + \sum_{i=1}^n W_i \|\boldsymbol{\theta}_i - \boldsymbol{\xi}\|^2$ and degrees of freedom n+q+2.

(d) Full conditional distributions of U_i and W_i .

$$p(U_i|\sim) \propto H_1(U_i|\nu)U_i^{n_i/2} \exp\left\{-\frac{U_i}{2\sigma_{\epsilon}^2} \|\mathbf{Y}_i - \mathbf{X}_i\|^2\right\},$$

$$p(W_i|\sim) \propto H_2(W_i|\kappa)W_i^{q/2} \exp\left\{-\frac{W_i}{2} \|\boldsymbol{\theta}_i - \boldsymbol{\xi}\|_{\boldsymbol{\Sigma}^{-1}}^2\right\}.$$

Assuming that $U_i \sim Ga(\nu/2, \nu/2)$, then the full conditional posterior distribution of U_i is still a Gamma distribution with shape parameter $n_i/2 + \nu/2$ and rate parameter $\nu/2 + \frac{1}{2\sigma_e^2} ||\mathbf{Y}_i - \mathbf{X}_i||^2$. Similarly, the full conditional posterior distribution of W_i is a Gamma distribution with shape parameter $\kappa/2 + q/2$ and rate parameter $\kappa/2 + \frac{1}{2} ||\boldsymbol{\theta}_i - \boldsymbol{\xi}||_{\boldsymbol{\Sigma}^{-1}}^2$.

(e) Full conditional distributions of ν and κ .

$$p(\nu|\sim) \propto p(\nu) \prod_{i=1}^{n} H_1(U_i|\nu),$$

 $p(\kappa|\sim) \propto p(\kappa) \prod_{i=1}^{n} H_2(W_i|\kappa).$

Assuming that $U_i \sim Ga(\nu/2,\nu/2)$ and a truncated exponential prior $\lambda_{\nu} \exp(-\lambda_{\nu} \cdot \nu) I(\nu > 2.0)$ is assigned on ν , then the full conditional posterior distribution of ν is proportional to $\left\{ (\nu/2)^{\nu/2}/\Gamma(\nu/2) \right\}^n \prod_{i=1}^n U_i^{\nu/2-1} \exp(-\nu U_i/2) \exp(-\lambda_{\nu} \cdot \nu) I(\nu > 2.0)$. This is not a standard distribution; however, we can apply the Metropolis-Hastings algorithm to sample it. In the same way, under the assumption of $W_i \sim Ga(\kappa/2,\kappa/2)$ and the prior $p(\kappa) \propto \exp(-\lambda_{\kappa} \cdot \kappa) I(\kappa > 2.0)$, the full conditional posterior distribution of κ is given by

$$p(\kappa|\sim) \propto \left\{ (\kappa/2)^{\kappa/2} / \Gamma(\kappa/2) \right\}^n \prod_{i=1}^n W_i^{\kappa/2-1} \exp(-\kappa W_i/2) \exp(-\lambda_{\kappa} \cdot \kappa) I(\kappa > 2.0),$$

which is also sampled by the Metropolis-Hastings algorithm. (f) Sample σ_{ϵ}^{-2} .

$$p(\sigma_{\epsilon}^{-2}|\sim) \propto p(\sigma_{\epsilon}^{-2})(\sigma_{\epsilon}^{-2})^{N/2} \exp\left\{-\frac{1}{2\sigma_{\epsilon}^{2}} \sum_{i=1}^{n} U_{i} \|\mathbf{Y}_{i} - \mathbf{X}_{i}\|^{2}\right\}.$$

Assuming that σ_{ϵ}^{-2} has a Gamma prior $Ga(a_0,b_0)$, then the full conditional posterior distribution of σ_{ϵ}^{-2} is a Gamma distribution with shape parameter $a_0+N/2$ and rate parameter $b_0+\frac{1}{2}\sum_{i=1}^n U_i\|\mathbf{Y}_i-\mathbf{X}_i\|^2$ where $N=\sum_{i=1}^n n_i$. (g) Sample λ_{η} .

$$p(\lambda_{\eta}|\cdot) \propto p(\lambda_{\eta})\lambda_{\eta}^{(J-2)/2} \exp\{-\frac{\lambda_{\eta}}{2}\|\mathbf{D}_{2}\boldsymbol{\zeta}\|^{2}\}.$$

Assuming that λ_{η} has a Gamma prior $Ga(a_{\lambda},b_{\lambda})$, then the full conditional posterior distribution of λ_{η} is a Gamma distribution with shape parameter $a_{\lambda}+(J-2)/2$ and rate parameter $b_{\lambda}+\frac{1}{2}\|\mathbf{D}_{2}\boldsymbol{\zeta}\|^{2}$.

S2 Additional results of the Gene Regulation Study

Table S1: The effective sample sizes and Gelman–Rubin convergence diagnostics for the gene regulation mixed-effects ODE models. The values of \hat{R} is less than 1.1 indicate the convergence of Markov chains.

Method	Parameters	Effe	Gelman–Rubin		
TVIO III O G		Chain 1	Chain 2	Chain 3	\hat{R}
SMN	$ln(\alpha)$	5297.52	4846.53	4842.77	1.02
	$\ln(\beta)$	1189.24	1282.37	1667.38	1.07
	$ln(\gamma)$	678.04	633.69	867.72	1.03
	$\ln(\delta)$	14637.24	19793.41	18442.82	1.03
Normal	$ln(\alpha)$	1370.34	2257.52	2765.37	1.08
	$\ln(\beta)$	1472.13	966.08	774.09	1.08
	$\ln(\gamma)$	815.65	588.15	524.95	1.02
	$\ln(\delta)$	9132.64	12569.69	9687.08	1.04

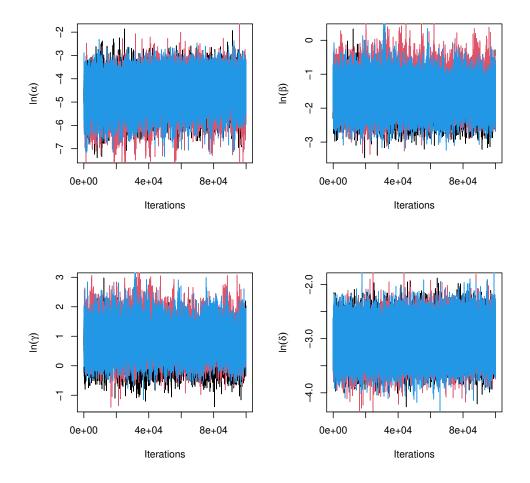


Figure S1: Trace plot to informally check convergence of MCMC samples based on the rest of Markov chains for the fixed-effects $\{\ln(\alpha), \ln(\beta), \ln(\gamma), \ln(\delta)\}$ in the gene regulation mixed-effects ODE model (4.1) under the SMN model.

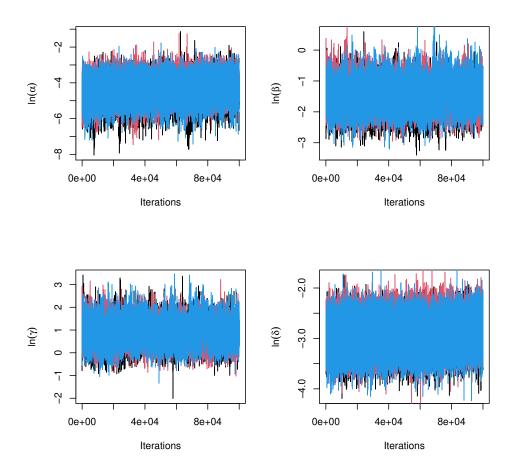


Figure S2: Trace plot to informally check convergence of MCMC samples based on the rest of Markov chains for the fixed-effects $\{\ln(\alpha), \ln(\beta), \ln(\gamma), \ln(\delta)\}$ in the gene regulation mixed-effects ODE model (4.1) under the Normal model.

Table S2: The individual CPO_i for fifteen genes using the formula (3.9). The bold values indicate the influential genes.

Criterion	Distribution assumptions				
Cinton	SMN distributions	Normal distributions			
$\widehat{\mathrm{CPO}}_1$	7.01×10^{5}	2.11×10^{6}			
$\widehat{\mathrm{CPO}}_2$	1.03×10^7	2.21×10^6			
$\widehat{\mathrm{CPO}}_3$	38.33	612.11			
$\widehat{\mathrm{CPO}}_4$	1.45×10^8	5.54×10^6			
$\widehat{\mathrm{CPO}}_5$	1.86×10^{8}	8.80×10^6			
$\widehat{\mathrm{CPO}}_6$	6.46×10^7	8.65×10^6			
$\widehat{\mathrm{CPO}}_7$	3.11×10^6	1.71×10^5			
$\widehat{\mathrm{CPO}}_8$	25.07	175.68			
$\widehat{\mathrm{CPO}}_9$	104.07	2.10×10^4			
$\widehat{\mathrm{CPO}}_{10}$	4.73×10^7	3.39×10^6			
$\widehat{\mathrm{CPO}}_{11}$	6.07×10^9	2.51×10^7			
$\widehat{\mathrm{CPO}}_{12}$	6.71×10^{-8}	7.03×10^{-16}			
$\widehat{\mathrm{CPO}}_{13}$	2.62×10^7	7.77×10^6			
$\widehat{\mathrm{CPO}}_{14}$	1.29×10^4	2.56×10^4			
$\widehat{\mathrm{CPO}}_{15}$	1.67×10^5	2.93×10^5			
$B = \sum_{i=1}^{15} \log(\widehat{CPO}_i)$	174.16	146.04			
DIC	-2186.90	-1502.30			

S3 Additional results of simulation studies

Table S3: The bias, standard deviation(SD) and mean absolute deviation error (MADE) of estimates for the fixed effects of the mixed-effects ODE model (5.1) under Scenario I based on 100 simulation replicates. The true values of fixed effects $\alpha=1.2,\,\beta=3.5$ and $\delta=1.0$.

	Fixed-effects	Distribution assumptions					
n		SMN distributions			Normal distributions		
		Bias	SD	MADE	Bias	SD	MADE
50	α	0.403	0.141	0.426	0.311	0.128	0.336
	β	-0.255	0.190	0.317	-0.366	0.215	0.424
	δ	-0.298	0.098	0.313	-0.3388	0.109	0.354
	$\eta(t)$	N/A	N/A	0.458	N/A	N/A	0.401
100	α	0.430	0.099	0.441	0.343	0.109	0.360
	β	-0.281	0.145	0.316	-0.384	0.162	0.417
	δ	-0.324	0.071	0.331	-0.361	0.078	0.368
	$\eta(t)$	N/A	N/A	0.490	N/A	N/A	0.427

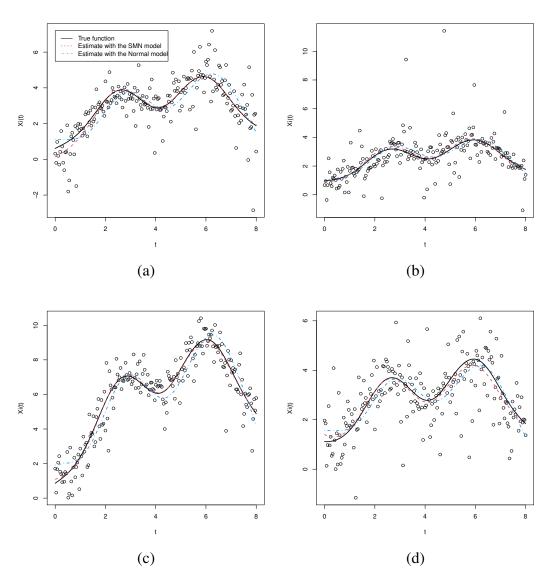


Figure S3: The fitted ODEs in the simulation Scenario II where the observations errors were generated from the distribution $0.6 \times t(3)$.

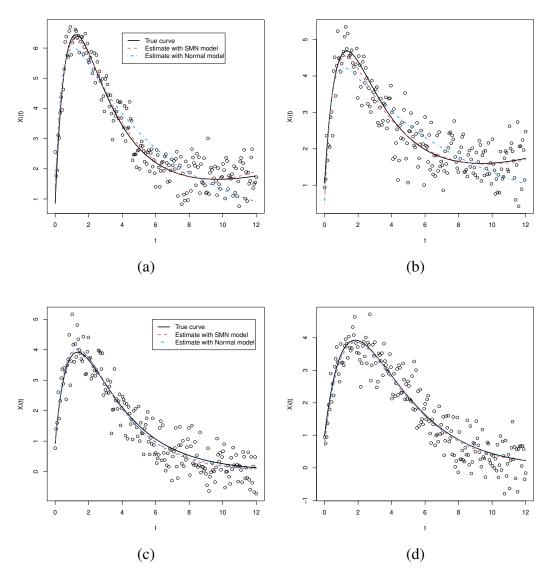


Figure S4: The upper panel shows the fitted ODEs in the simulation Scenario III-(a); the lower panel shows the fitted ODEs in the simulation Scenario III-(b).

To study the sensitivity of the proposed method to the choice of J, we conducted a sensitivity analysis regarding the different choice of J under the same simulation setting of Scenario II. The same datasets are reanalyzed with different J=20 and 40. To evaluate the performance of the proposed method, we use the integrated squared error (ISE) and the integrated absolute error (IAE):

$$\mathrm{ISE} = \int_0^8 [\hat{\eta}(t) - \eta(t)]^2 \mathrm{d}t, \quad \text{and} \quad \mathrm{IAE} = \int_0^8 |\hat{\eta}(t) - \eta(t)| \mathrm{d}t.$$

Figure S5 displays the boxplots of ISE and IAE as well as the estimates of $\hat{\eta}(t)$ with different J based on 100 simulation replicates, which showed that the performance of our proposed method is robust to the choice of J.

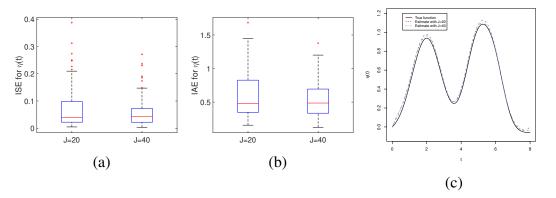


Figure S5: The left panel and the middle panel show the ISEs and IAEs for $\hat{\eta}(t)$ in the mixed-effects ODE model (5.1) under the SMN model when fitting $\eta(t)$ using penalized splines with different number of splines basis functions, respectively. The right panel shows the true function as well as the estimates for $\eta(t)$ in the mixed-effects ODE model (5.1) under the SMN model when fitting $\eta(t)$ using penalized splines with different number of splines basis functions ('-': the true function; '--': the estimate with J=20; '-·': the estimate with J=40).

Reference

1. Liang, F., Liu, C. and Carroll, R.J. (2010), Advanced Markov chain Monte Carlo: Learning from Past Samples, *Wiley*.