Some more worked examples from Ch 2
p 83 Exercise 45. (Note that a good understanding of conditioning would allow you to read the answers almost directly from the table)
a) $\mathrm{P}(\mathrm{A})=$ how many ways can someone be $\mathrm{A} ?=.106+.141+.200=.447$
$\mathrm{P}(\mathrm{C})=.215+.200+.065+.020=.500$
$\mathrm{P}(\mathrm{A}$ and C$)=.200$
b) $\mathrm{P}(\mathrm{A} \mid \mathrm{C})=\mathrm{P}(\mathrm{A}$ and C$) / \mathrm{P}(\mathrm{C})=.200 / .500=.400$ proportion of group 3 that are type A $\mathrm{P}(\mathrm{C} \mid \mathrm{A})=\quad / \mathrm{P}(\mathrm{A})=.200 / .447=.447$ proportion of type A that are group 3
c) Given B^{\prime}, what is prob of group 1? i.e $\mathrm{P}\left(\right.$ group $\left.1 \mid \mathrm{B}^{\prime}\right)=$?
$\mathrm{P}\left(\right.$ group $\left.1 \mid \mathrm{B}^{\prime}\right)=\mathrm{P}\left(\right.$ group 1 and $\left.\mathrm{B}^{\prime}\right) / \mathrm{P}\left(\mathrm{B}^{\prime}\right)$
$\mathrm{P}\left(\mathrm{B}^{\prime}\right)=$ sum of columns O, A and $\mathrm{AB}=.432+.447+.030=.909$
$\mathrm{P}\left(\right.$ group 1 and $\left.\mathrm{B}^{\prime}\right)=.082+.106+.004=.192$
So $\mathrm{P}\left(\right.$ group $\left.1 \mid \mathrm{B}^{\prime}\right)=.192 / .909=.211$
p 84 Exercise 57. Explain in words why this must be true!
p 85 Exercise 65. 500 in Mean, 300 in Median, 200 in Mode

Satisfied	200	150

$\mathrm{P}($ Mean \mid Satis $)=\mathrm{P}($ Satis \mid Mean $) \mathrm{P}($ Mean $) / \mathrm{P}($ Satis $)$
$\mathrm{P}($ Satis $)=(200+150+160) / 1000=.510$
So $\mathrm{P}($ Mean \mid Satis $)=(200 / 500)(500 / 1000) / .510=.4^{*} .5 / .51=.392$
Similarly
$\mathrm{P}($ Median \mid Satis $)=(150 / 300)(300 / 1000) / .510=.5^{*} .3 / .51=.294$
and $\mathrm{P}($ Mode \mid Satis $)=(160 / 200)(200 / 1000) / .510=.8^{*} .2 / .51=.314$
So most likely is Mean and Least Likely is Median (for the randomly selected student that was satisfied).

Note we did not need Bayes Theorem, only the twice applied definition of $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$.
p 91 Exercise 77
O : the event old one fails
Y: the event young one fails
$\mathrm{P}\left(\mathrm{O} \cap \mathrm{Y}^{\prime}\right)=.10=\mathrm{P}(\mathrm{O})(1-\mathrm{P}(\mathrm{Y}))$ by independence, so $\mathrm{P}(\mathrm{O})=.10 /(1-\mathrm{P}(\mathrm{Y}))$
Similarly, $\mathrm{P}\left(\mathrm{O}^{\prime} \cap \mathrm{Y}\right)=.05=\mathrm{P}(\mathrm{Y})((1-\mathrm{P}(\mathrm{O}))=\mathrm{P}(\mathrm{Y})(1-.10 /(1-\mathrm{P}(\mathrm{Y})))$
Solve for $\mathrm{x}=\mathrm{P}(\mathrm{Y})$: . $05=\mathrm{x}-.10 \mathrm{x} /(1-\mathrm{x})$
$.05(1-\mathrm{x})=\mathrm{x}(1-\mathrm{x})-.1 \mathrm{x}$ so $.05=.95 \mathrm{x}-\mathrm{x}^{2}$ or $\mathrm{x}^{2}-.95 \mathrm{x}+.05=0$
$x=.95 / 2 \pm(1 / 2)\left(.95^{2}-.2\right)^{1 / 2}$

So $\mathrm{x}=.0559$ or .894 and the only feasible solution is $\mathrm{P}(\mathrm{Y})=.0559$
So $\mathrm{P}(\mathrm{O})=.10 /(.9441)=.1059$ and finally $\mathrm{P}(\mathrm{Y}) * \mathrm{P}(\mathrm{O})=.1059^{*} .0559=.0059$
The probability that the system fails is .0059 . (harder than it looked!)

