
Chapter 2 Theory from Sections 2.4 and 2.5 
 
A simple example is useful for understanding conditioning – after this I will survey the 
theory of section 2.4 and 2.5. 
------------------------------------ 
An bowl contains 4 White balls and 2 Black balls.  One ball is drawn at random 
and its colour is called C1.  It is not replaced.  Then a second ball is drawn at random 
from the four that are left and its colour is called C2. The sample space for this 
experiment is{(W,W),(W,B),(B,W),(B,B)}. The probabilities associated with these 
outcomes are, respectively, (4/6)(3/5), (4/6)(2/5), (2/6)(4/5),(2/6)(1/5) which simplifies to 
6/15,4/15,4/15,1/15.  Suppose we want P(C2=W after C1=B is known), and we write this 
P(C2=W|C1=B).  The condition forces us to look only at the last two possible outcomes, 
(B,W) and (B,B).  Note that these are NOT equally likely outcomes, and in fact their 
probabilities are 4/15 and 1/15.  So in this subset, (B,W) occurs 80% of the time and 
(B,B) occurs  20% of the time.  We might alternatively do the calculation this way ... 
P(C2=W|C1=B) = (4/15)/(4/15+1/15) = .80 
 
Is there a formalism that will organize this kind of calculation in a more complex 
situation? 
 
On p 77 we can use definition (2.3) to write 
 
P(C2=W|C1=B) = P(C2=W AND C1=B)/P(C1=B) = (4/15)/P(C1=B) 
 
But P(C1=B) = P({C1=B,C2=W} or {C1=B,C2=B}) = 4/15 + 1/15 = 1/3 
 
So P(C2=W|C1=B) = (4/15)/(1/3)  = .80 
 
What if you wanted P(C1=B|C2=W)?  Is it possible to go backwards in time? Yes! 
 
P(C1=B|C2=W) = P(C1=B AND C2=W)/P(C2=W) = (4/15)/P(C2=W) 
 
But, P(C2=W) = P({C2=W and C1=W}or {C2=W and C1=B}) = 6/15 + 4/15 =2/3 
 
So, P(C1=B|C2=W) = (4/15)/(2/3)=.40 
 
So we see that P(C2=W|C1=B) = .80 but P(C1=B|C2=W)=.40 
 
Be careful with the interpretation.  Can we conclude that W follows B more often than B 
follows W? No.  They both occur with equal frequency (4/15). The conditional 
probabilities assume the condition has occurred already. The conditional probability does 
not say what happens unconditionally.  
 
 
p 77 (2.3) defines P(A|B).  A look at the definition should suggest why it is verbalized as 
the "probability of A given B is know to occur", or, more briefly, "probability of A given 



B".  Of all the LRRF associated with B, we want the proportion of LRRF that is also 
associated with A.   
 
p 78 The "multiplication rule" is really just a re-expression of definition (2.3).  But the 
reason it is called that is, in the special case that P(A|B) = P(A), it is then true that  
P(A and B) = P(A) P(B) 
 
p 81.  Since it seems so obviously true, we already used the fact that  
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The outcomes in A are exactly those outcomes that occur with B, or else without B.  
Note that (A
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"B') are mutually exclusive so that 
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and using the defintion of conditional probability 
         = P(A|B)P(B) + P(A|B')P(B') 
which essentially verifies (2.5).   This is a very useful relationship.  If you think about it 
long enough, you will see that it is intuitively obvious.  
 
In the introductory paragraph for these notes, we computed something like P(A|B) and 
then P(B|A).  Note that we could express one of these in terms of the other using  
 
P(B|A) = P(A

! 

"B)/P(A) and then using the same relationship again = P(A|B)P(B)/P(A) 
 
This looks very handy but the catch is that P(A) is not always readily available.  We need 
to use (2.5) for it.  When we do the result is Bayes Theorem – see p 82.  
 
Section 2.5 
 
The special case of the multiplication rule, mentioned above,  
 
in the special case that P(A|B) = P(A), it is then true that P(A and B) = P(A) P(B) 
  
is the case of independence of A and B.  
 
Note that if A and B are independent, and B and C are independent, it is NOT necessarily 
true that A and C are independent. A counterexample emerges when C is the same event 
as A. This is why we need a definition of mutual independence p 89. 
 
The next posting will include some worked examples that we will also cover in class.  


