A simple example is useful for understanding conditioning - after this I will survey the theory of section 2.4 and 2.5 .

An bowl contains 4 White balls and 2 Black balls. One ball is drawn at random and its colour is called C1. It is not replaced. Then a second ball is drawn at random from the four that are left and its colour is called C 2 . The sample space for this experiment is $\{(\mathrm{W}, \mathrm{W}),(\mathrm{W}, \mathrm{B}),(\mathrm{B}, \mathrm{W}),(\mathrm{B}, \mathrm{B})\}$. The probabilities associated with these outcomes are, respectively, $(4 / 6)(3 / 5),(4 / 6)(2 / 5),(2 / 6)(4 / 5),(2 / 6)(1 / 5)$ which simplifies to $6 / 15,4 / 15,4 / 15,1 / 15$. Suppose we want $\mathrm{P}(\mathrm{C} 2=\mathrm{W}$ after $\mathrm{C} 1=\mathrm{B}$ is known $)$, and we write this $\mathrm{P}(\mathrm{C} 2=\mathrm{W} \mid \mathrm{C} 1=\mathrm{B})$. The condition forces us to look only at the last two possible outcomes, (B, W) and (B, B). Note that these are NOT equally likely outcomes, and in fact their probabilities are $4 / 15$ and $1 / 15$. So in this subset, (B,W) occurs 80% of the time and (B, B) occurs 20% of the time. We might alternatively do the calculation this way ... $\mathrm{P}(\mathrm{C} 2=\mathrm{W} \mid \mathrm{C} 1=\mathrm{B})=(4 / 15) /(4 / 15+1 / 15)=.80$

Is there a formalism that will organize this kind of calculation in a more complex situation?

On p 77 we can use definition (2.3) to write
$\mathrm{P}(\mathrm{C} 2=\mathrm{W} \mid \mathrm{C} 1=\mathrm{B})=\mathrm{P}(\mathrm{C} 2=\mathrm{W}$ AND $\mathrm{C} 1=\mathrm{B}) / \mathrm{P}(\mathrm{C} 1=\mathrm{B})=(4 / 15) / \mathrm{P}(\mathrm{C} 1=\mathrm{B})$
But $\mathrm{P}(\mathrm{C} 1=\mathrm{B})=\mathrm{P}(\{\mathrm{C} 1=\mathrm{B}, \mathrm{C} 2=\mathrm{W}\}$ or $\{\mathrm{C} 1=\mathrm{B}, \mathrm{C} 2=\mathrm{B}\})=4 / 15+1 / 15=1 / 3$
So $\mathrm{P}(\mathrm{C} 2=\mathrm{W} \mid \mathrm{C} 1=\mathrm{B})=(4 / 15) /(1 / 3)=.80$
What if you wanted $\mathrm{P}(\mathrm{C} 1=\mathrm{B} \mid \mathrm{C} 2=\mathrm{W})$? Is it possible to go backwards in time? Yes!
$\mathrm{P}(\mathrm{C} 1=\mathrm{B} \mid \mathrm{C} 2=\mathrm{W})=\mathrm{P}(\mathrm{C} 1=\mathrm{B}$ AND $\mathrm{C} 2=\mathrm{W}) / \mathrm{P}(\mathrm{C} 2=\mathrm{W})=(4 / 15) / \mathrm{P}(\mathrm{C} 2=\mathrm{W})$
But, $\mathrm{P}(\mathrm{C} 2=\mathrm{W})=\mathrm{P}(\{\mathrm{C} 2=\mathrm{W}$ and $\mathrm{C} 1=\mathrm{W}\}$ or $\{\mathrm{C} 2=\mathrm{W}$ and $\mathrm{C} 1=\mathrm{B}\})=6 / 15+4 / 15=2 / 3$
So, $\mathrm{P}(\mathrm{C} 1=\mathrm{B} \mid \mathrm{C} 2=\mathrm{W})=(4 / 15) /(2 / 3)=.40$
So we see that $\mathrm{P}(\mathrm{C} 2=\mathrm{W} \mid \mathrm{C} 1=\mathrm{B})=.80$ but $\mathrm{P}(\mathrm{C} 1=\mathrm{B} \mid \mathrm{C} 2=\mathrm{W})=.40$
Be careful with the interpretation. Can we conclude that W follows B more often than B follows W? No. They both occur with equal frequency (4/15). The conditional probabilities assume the condition has occurred already. The conditional probability does not say what happens unconditionally.
p 77 (2.3) defines $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$. A look at the definition should suggest why it is verbalized as the "probability of A given B is know to occur", or, more briefly, "probability of A given
$B "$. Of all the LRRF associated with B, we want the proportion of LRRF that is also associated with A.
p 78 The "multiplication rule" is really just a re-expression of definition (2.3). But the reason it is called that is, in the special case that $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$, it is then true that $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$
p 81. Since it seems so obviously true, we already used the fact that
$\mathrm{A}=(\mathrm{A} \cap \mathrm{B}) \cup\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)$.
The outcomes in A are exactly those outcomes that occur with B , or else without B .
Note that $(A \cap B)$ and $\left(A \cap B^{\prime}\right)$ are mutually exclusive so that
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})+\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)$
and using the defintion of conditional probability

$$
=\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})+\mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}^{\prime}\right) \mathrm{P}\left(\mathrm{~B}^{\prime}\right)
$$

which essentially verifies (2.5). This is a very useful relationship. If you think about it long enough, you will see that it is intuitively obvious.

In the introductory paragraph for these notes, we computed something like $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ and then $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$. Note that we could express one of these in terms of the other using
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) / \mathrm{P}(\mathrm{A})$ and then using the same relationship again $=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B}) / \mathrm{P}(\mathrm{A})$
This looks very handy but the catch is that $\mathrm{P}(\mathrm{A})$ is not always readily available. We need to use (2.5) for it. When we do the result is Bayes Theorem - see p 82 .

Section 2.5

The special case of the multiplication rule, mentioned above,
in the special case that $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$, it is then true that $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$
is the case of independence of A and B.
Note that if A and B are independent, and B and C are independent, it is NOT necessarily true that A and C are independent. A counterexample emerges when C is the same event as A. This is why we need a definition of mutual independence p 89 .

The next posting will include some worked examples that we will also cover in class.

