
Chapter 3 – Discrete Probability Models 
 
Sections 3.1-3.3: The tools for describing discrete probability models 
 
3.1 Random variables, X 
3.2 Probability Distribution of X 
3.3 Expected Value of X 
 
Random variable (p 98 for formal definition) – really just a variable whose values are 
determined by a "random" process, or in other words, a variable that records the various 
possible values for the outcomes of an experiment. 
 
e.g. X1=number of heads in 10 tosses of a fair coin 
       X2=number of visible stars in the sky 
       Y1=proportion of a hamburger that is fat  
       Y2=time until the next major earthquake occurs in Vancouver 
 
Discrete random variable:  One that has a countable number of values (e.g. X1 or X2) 
Continuous random variable:  One that has a continuum of values (e.g. Y1, which can be 
any value in [0,1]; or Y2, which could be any value in {0,1,2,....}) 
 
Rest of chapter focuses on models for special discrete random variables. 
If the "experiment" we were discussing in Ch 1 & 2 produces values that can be listed 
(are countable), then we can imagine certain probabilities being attached to each  possible 
value.  It is very helpful for analysis when we have a model for the list of probabilities, 
and it turns out that there are several experiments where this model is known, either 
exactly or approximately.  
 
Of course, one general model is just to say that the sample space associated with a 
particular random variable X is given by a table of values of P(X=x): 
 
e.g      X      P(X=x) 
 --- --------- 
 0 .25 
 1 .40 
 2 .20 
 3 .15 
 
Any such definition  
But there are some random variables where the P(X=x) can be written as a simple 
function of x.  For example, Suppose Y can take values 0,1,2,... with probabilities 
P(Y=y)=.1*(.9)(y-1)  for y=1,2,....  These probabilities do sum to 1 as you can check.  
What "experiment" would actually produce values of Y with this particular sequence of 
probabilties? One answer, as you will see (p 133), is that if Y is the number of random 
selections of the digits {0,1,2,...,9} that it takes until you get "0" for the first time.  This is 



closely related to a discrete probability model called the geometric distribution – which 
we will meet again later in this chapter.  
 
The above was to convey what discrete probability models are, and to hint at why they 
are useful.  Now we back up to the simplest models - actually the simplest one is very 
important: it is the Bernoulli model.  This is just a model for the occurrence or non-
occurrence of an event:    P(X=x) = px(1-p)(1-x) where x=0 or 1, and 0≤p≤1.  Compare this 
with the definition on p 99.  Note this is equivalent to the tabular definition.  
x P(X=x) 
--- --------- 
0 (1-p) 
1 p 
which explains why the apparently complex formula above is actually as general as the 
definition on p 99.  
 
We need some more general tools to describe discrete distributions – we will use some 
similar tools for continuous distributions (in Ch 4). The tools are probability models for 
random variables, and expected values of random variables. The latter gives a way to 
describe the location and spread of random variables.  
 
First a note on possible confusion with words to describe random variables.  
 
A random variable X may have a probability distribution P(X=x) which may be described 
by a table of probabilities (x, P(X=x)) or by a model formula P(X=x)=f(x).  Furthermore, 
if we have several observed values of this random variable, we may describe the 
distribution of the data.  The word "distribution" pops up in many ways.  We say X has a 
certain distribution, or that the distribution of X is given by the table of (x,P(X=x)), or 
that f(x) is the distribution of X.  
 
Now back to the general tools to describe distributions.  Just as in Ch 1 when we were 
describing data distributions, we can describe a probability distribution by describing its 
location (or center) and spread.  In spite of the discussion of alternative measures of 
location and spread for descriptive purposes, we usually use mean and standard deviation 
for characterizing probability distributions.  Since we have a formula for the relative 
probabilities in our models, the mean and standard deviation is usually enough to fix the 
shape of the whole distribution.  For example if we have a model P(X=x) = p(1-p)(1-x) 
x=1,2,3,..., just knowing the mean is 5 will imply that p = 1/5 (its not obvious but will be 
shown). The point is that mean and sd can be expressed in terms of the parameters of the 
model, and the parameters of the model can often be expressed in terms of the mean and 
sd (for many models).  
 
For any X for which P(X=x) is known (either as numerical probabilities or as known 
functions of the parameters), you can compute the mean (known as the expected value of 
X and denoted E(X) in this context when the probabilities are stated exactly) from  
 



E(X) = 

! 

xP(X = x)
x

"  where the summation is intended to be over all values of x that 

have positive probability.    Why is this considered to be a "mean"? 
 
Suppose we have a rv that takes the following values with equal probability 
{1,1,1,1,2,2,2,2,3,3}.  The mean would clearly be the sum/10 = 1.8. 
We could have first counted the proportion of the time each value occurs: 1 occurs .4 of 
the time, 2 also occurs .4 of the time, and 3 occurs .2 of the time.  So the average could be 
computed as [(1 x 4)+(2 x 4)+(3 x 2)]/10 = 1.8, or, bringing the 10 inside,  (1 x .4) + (2 x 
.4) + (3 x .2) = 1.8.  This last form is just the formula 

! 

xP(X = x)
x

" .  

So the "expected value of X" or E(X) is the (theoretical) mean of the distribution of X. 
 
Going back to  {1,1,1,1,2,2,2,2,3,3}, if I add 3 to each value, how much does this change 
the mean?  Obviously, from 1.8 to 4.8, right?  Also, if I multiply each data value by 2, 
what happens to the mean? 1.8 to 3.6.  Now look at the box on the bottom of p 115. So if 
you know the mean of  X in {1,1,1,1,2,2,2,2,3,3}, you don't have to redo the whole 
calculation if you want to know E(2X +3), the mean of  2X +3.  What is it?  
 
Now what if you wanted the mean of X2, where X is randomly drawn from 
{1,1,1,1,2,2,2,2,3,3}?  Is it 1.82?  No.  (You can check it would be larger than that).   
We need to go back to the relative frequency of 1,2,and 3.   
E(X2) = 12 x .4 + 22 x .4 + 32 x .2 = .4+1.6+1.8 = 3.8  
 
The general rule for finding means of functions of X is given by the first box on p 115. 
 
Now one very special function of X is called the variance of X.  It is defined as the 
average squared deviation from the mean of X. (p 116).   
 
Going back to {1,1,1,1,2,2,2,2,3,3}, the mean was 1.8, so the deviations are  
{-.8,-.8,-.8,-.8,.2,.2,.2,.2,1.2,1.2} and the squares of these are 
{.64,.64,.64,.64,.04,.04,.04,.04,1.44,1.44} and the average of these is 0.56.   
(Note "mean" is always the same as "average") 
 
So the variance of X is 0.56.   
 
Of course we could have computed it as (-.8)2 x .4 + (.2)2 x .4 + (1.2)2 x .2 =0.56. 
This is the formula in the box p 116.  
 
Now because the variance of X is based on the deviations from the mean, it is reasonable 
to think of "variance" as a measure of variation.  It is in a way, but note that it is not in 
the same units as the original data.  If the original data were in feet, the variance would be 
in square feet.  It would be best to report the variability of the data in the same units as 
the data.  So the measure to do this is the standard deviation which is the square root of 
the variance.  In this example, SD = (0.56)1/2 = 0.75.   
 
The alternative formula for calculating the variance is in the box on p 117.   



In our example, the values of X2 are {1,1,1,1,4,4,4,4,9,9} and the average of these is 3.8 
so by the formula on p 117 we have  
variance of X = 3.8 – (1.8)2 = 3.80-3.24 = 0.56 
 
Now, at last we can get to the meat of this course!  A good understanding of a few 
models will be a powerful tool for predicting the effects of unexplained or uncontrolled 
variation in measurements.  The models we cover in this chapter are the Bernoulli, 
Binomial, Hypergeometric, Negative Binomial, and the Poisson Distribution – sections 
3.4 to 3.6 of this chapter.  


