Ch 4 Probability Models for Continuous Random Variables

Some Models Introduced in this Chapter (after the tools to describe them are covered). Uniform, Normal, Gamma, Exponential, Chi-squared, Weibull, Lognormal

Sections 1 and 2 - Tools to describe continuous RVs

Continuous RV - takes values over an interval (p 148)
Density function of RV X is $f(x)$ defined by

$$
\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})=\int_{a}^{b} f(x) d x
$$

If this seems mysterious, note that for a discrete RV Y,

$$
\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})=\sum_{a}^{b} P(X=x)
$$

So $f(x) d x$ is a bit like $P(X=x)$. But $f(x) d x$ is a limiting value of $f(x) \Delta x$, where $f(x) \Delta x$ is the area in the rectangle with base $\Delta \mathrm{x}$ and height $\mathrm{f}(\mathrm{x})$. So $\mathrm{f}(\mathrm{x})$ gives the relative probabilities for random values x, even though $f(x) d x=0=P(X=x)$. Now look at the graph of $f(x)$ at the bottom of page 147. The area between a and b (approximated by all those thin rectangles over Δx in $(a, b))$ is the probability that X lies in (a, b). The heights of $f(x)$ gives the relative frequencies of X.

Skip to next page

If the function $f(x)$ gives the relative frequencies of X, what would a random sample of $\mathrm{n}=25$ points look like? Would you expect the intervals with big $\mathrm{f}(\mathrm{x})$ to have the greater proportion of the 25 sample values? YES.

$f(x)$ is called the density of X, and sometimes the notation is $f_{X}(x)$ to allow specification of the related random variable.
Note the connection between the cumulative distribution function and the density function:

$$
\mathrm{P}(\mathrm{X} \leq \mathrm{x})=\mathrm{F}(\mathrm{x})=\int_{-\infty}^{x} f(x) d x
$$

Check the definitions of $\mathrm{E}(\mathrm{X})$ and $\mathrm{V}(\mathrm{X})$ for continuous RVs pp157-158
The Uniform Distribution on $[\mathbf{0}, \mathbf{1}]$ denoted $\mathrm{U}(0,1)$ usually, U the RV

This is the distribution that attributes equal relative frequency to every value in the interval $[0,1]$ of the real line. $\mathrm{f}(\mathrm{x})=1$ as long as $0 \leq \mathrm{x} \leq 1$. What about $\mathrm{x} \leq 0$ or $\mathrm{x} \geq 1$?

$$
\text { so } \mathrm{P}(\mathrm{X} \leq \mathrm{x})=\mathrm{F}(\mathrm{x})=\int_{0}^{x} 1 d x=\mathrm{x} \text { for } 0 \leq \mathrm{x} \leq 1 \text { in this case }
$$

Check, by thinking of the graph of $\mathrm{f}_{\mathrm{U}}(\mathrm{x})$, that this result $\mathrm{P}(\mathrm{X} \leq \mathrm{x})=\mathrm{x}$, is reasonable.

The Normal Distribution (section 4.3 pp 160ff).

The normal density function (p 161) looks complex but is essentially just $e^{-x^{2}}$. In this function, as you move away from $0 \mathrm{x}^{2}$ gets bigger and $e^{-x^{2}}$ gets smaller. Or, think of $e^{x^{2}}$ as x moves away from 0 , and then think of the reciprocal. You get the well-known "bell curve". The rest of the functional form has parameters that

1. ensure the integral is 1
2. allows the mean to be different from 0
3. allows the spread to be controlled by an SD parameter.

Now look at the box on p 162. This is sometimes denoted the $\mathrm{N}(0,1)$ distribution - the standard normal distribution.

Note that the integral for the normal distribution is not tractable - this is a pity! It would be nice to have a closed expression for $\mathrm{P}(\mathrm{Z} \leq \mathrm{z})=\int_{-\infty}^{z} \frac{1}{2 \pi} e^{-\frac{z^{2}}{2}} d z$. However this function is tabulated - see p 740, Table A.3. So, for example, $\mathrm{P}(\mathrm{Z}<0)=.5000$ (but you knew this already from the symmetry, and also $\mathrm{P}(\mathrm{Z}<1)=0.8413$ which you could not guess.

So this tells you how to look up $\mathrm{P}(\mathrm{a}<\mathrm{z}<\mathrm{b})$ also, as long as Z has $\mathrm{N}(0,1)$ distribution.
For example $\mathrm{P}(-1<\mathrm{Z}<2)=$
$($ tabulated value for 2$)-($ tabulated value for -1$)=.9772-.1587=0.8185$
In other words, 81.85% of the distribution falls between -1 and +2 .
But what if we have a normal RV X with $(\mu, \sigma) \neq(0,1)$? How do we compute $\mathrm{P}(\mathrm{X}<\mathrm{x})$?
Suppose $(\mu, \sigma)=(100,15)$. What is the $\mathrm{P}(\mathrm{X}<130)$?

It turns out we can look this up in the $\mathrm{N}(0,1)$ Table with a little trickery.
Since X has mean 100 and sd $15, \mathrm{X}-100$ has mean 0 , and $(X-100) / 15$ has $s d=1 .(p$ 115116)

So if we define $\mathrm{Z}=(\mathrm{X}-100) / 15$. what expression in Z is equivalent to $\mathrm{X}<130$?
Note that $\mathrm{X}<130$ if and only if $(\mathrm{X}-100) / 15$ is less than 2 . (How did I get 2? just plug in 130 into the expression for Z .) And from the $\mathrm{N}(0,1)$ table $\mathrm{P}(\mathrm{Z}<2)=.9772$.

Why is the normal distribution important in stats? Most averages have a normal distribution. No matter what the distribution of the population, sample averages tend to have a normal distribution. There is also a technical reason. The Binomial, Poisson, Negative Binomial, Geometric, Exponential and Gamma distributions all have a special relationship to the normal distribution. We will explore these ideas in detail

