Solutions for STAT 270 assignment 2

38.

a. $P($ selecting 2 - 75 watt bulbs $)=\frac{\binom{6}{2}\binom{9}{1}}{\binom{15}{3}}=\frac{15 \cdot 9}{455}=.2967$
b. $P($ all tlree are the same $)=\frac{\binom{4}{3}+\binom{5}{3}+\binom{6}{3}}{\binom{15}{3}}=\frac{4+10+20}{455}=.0747$
c. $\binom{4}{1}\binom{5}{1}\binom{6}{1}=\frac{120}{455}=.2637$

d. To examine exactly one, a 75 watt bulb must be chosen first. (6 ways to accomplish this). To examine exactly two, we must choose anotber wattage first, then a 75 watt (9×6 ways). Following the patiert, for exactly three, $9 \times 8 \times 6$ ways; for four, $9 \times 8 \times 7 \times 6$; for five, $9 \times 8 \times 7 \times 6 \times 6$.

$$
\begin{aligned}
& \begin{aligned}
P(\text { examine at least } 6 \text { bulbs })-1 & -P(\text { examine } 5 \text { or less) } \\
& =1-P(\text { examine exactly } 1 \text { or } 2 \text { or } 3 \text { or } 4 \text { or } 5) \\
& =1-[P(\text { oce })+P(\text { two })+\ldots+P(\text { five })]
\end{aligned} \\
& =1-\left[\frac{6}{15}+\frac{9 \times 6}{15 \times 14}+\frac{9 \times 8 \times 6}{15 \times 14 \times 13}+\frac{9 \times 8 \times 7 \times 6}{15 \times 14 \times 13 \times 12}+\frac{9 \times 8 \times 7 \times 6 \times 6}{15 \times 14 \times 13 \times 12 \times 11}\right] \\
& =1-[4+2571+.1582+.0923+.0503] \\
& =1-.9579-.0421
\end{aligned}
$$

44. $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!k!}=\binom{n}{n-k}$

The number of subsets of size $k=$ the number of subsets of size $n-k$, because to each subset of siae k there corresponds exactly one subset of size $n-k$ (the n-k objects not in the subset of size k).
77. Let $A_{1}=$ older purmp fails, $A_{2}=$ newer purmp fails, and $x=P\left(A_{1} \cap A_{2}\right)$. Then $P\left(A_{1}\right)=.10+x$, $P\left(A_{2}\right)=.05+x$, and $x=P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) * P\left(A_{2}\right)-(.10+x)(.05+x)$. The resulting quadratic equation, $x^{2}-.85 x+005=0$, tas roots $x=.0059$ and $x=8441$. Hopefally the smaller root is the actual probability of system failare.
92.
a. $(.8)(.8)(.8)-.512$
b.

$$
.512+.032+.023+.023=.608
$$

c. $P(1$ sent $\mid 1$ received $)=\frac{P(1 \text { sent } \cap 1 \text { received })}{P(1 \text { received })}=\frac{.4256}{.5432}=.7835$
98.
a. $P($ both $+v e)=P($ carrier \cap both $+v e)+P($ not a carrier \cap both $+v e)$
$-P($ both $+v e \mid$ carrier $) \times P($ carrier $)$
$+\mathrm{P}($ both $+\mathrm{ve} \mid$ not a carrier) $\times \mathrm{P}$ (not a carrier)
$=(.90)^{2}(.01)+(.05)^{2}(99)=.01058$
$\mathrm{P}($ both -ve$)=(.10)^{2}(.01)+(.95)^{2}(.99)=.89358$
$\mathrm{P}($ tests agree $)=.01058+.89358=.90416$
b. $\mathrm{P}($ carrier \mid both +ve$)=\frac{P(\text { carrier } \cap \text { both.positive })}{P(\text { both } \text { positive })}=\frac{(.90)^{2}(.01)}{.01058}=.7656$

