
Intro to Ch 5 – Sampling Theory 
 
Section 5.1 Joint probabilities 
 
This chapter starts to describe how you set up the mathematics of samples or 
measurements (measurements).  As you will see, the independence of successive sample 
values (or successive measurements) simplifies things considerably. When you see the 
triple integrals, you will be glad that this independence allows us to avoid these 
complications.  
 
You can ignore the double and triple integrals – we don't really need this in this intro 
course.  But you need to have the idea that, while with one random variable you integrate 
the density function to get probabilities for an interval of values, with two random 
variables, you still integrate to get probabilities, but this time it is a double integral and it 
is the volume under the density surface that gives the probability. By analogy, any 
number of random variables can have a joint density (a hypersurface) and probabilities 
from multiple integration are provided by a hypervolume.  Fortunately, this complexity 
collapses for our purposes because in the special case that our many variables are IID 
(independent and identically distributed), we never have to do this multiple integration.  
As we will see, the IID case describes a random sample (of size n say), since each 
sampled value comes from the same population, and what happens in selecting sample i 
does not affect the selection of sample j (i.e. independence).  
 
The boxes on p 206-207 show you how to write down joint and marginal probabilities 
for two discrete RVs.  Turning the summation signs into integral operators provides the 
equivalent definitions for continuous RVs – see boxes on p 208-209.  
 
Is it obvious that fX(x) = 

! 

fX ,Y"#

#

$ (x,y)dy   ?   
 
Think in terms of probabilities.  If X=x, it must have happened in conjunction with some 
value of Y.  The integral sums up the probabilities for all possible values of y.  (Actually, 
not "probabilities" but densities, but the analogy is very close.  
 
Remember from Ch 2 (p 87), if A and B are independent events, P(A∩B) = P(A)*P(B). 
It is also true that, if X and Y are independent RVs,  
 
p(x,y) = p(x).p(y) when X,Y discrete and independent 
 
and  
 
f(x,y)=f(x).f(y) when X,Y continuous and independent 
 
(p 211) 
 
When these relationships are not true for all x,y, X,Y are called "dependent". 
 



box on p 212 extends all this in an obvious way to n variables. 
 
One interesting extension of the Binomial model is the Multinomial model.   
Recall we had a fixed number of Bernoulli trials with p(success) constant leading to a 
Binomial RV as the number of successes.  Note that we could consider this model leading 
to two outcomes (#successes, #failures).  We chose to focus on # successes only since we 
could always compute #failures = n - # successes.  But if we allow the binomial to have 
two outcomes, then the trinomial would have three outcomes: say type1, type2 and 
type3.  The trinomial RV would be reported as three counts, one for each type. Similarly 
there is a multinomial RV – see p 213.  
 
If you rolled a dice 25 times, the outcome might be recorded as something like 
(4,3,6,2,4,6) meaning 4 1s, 3 2s, etc. The probability of this particular outcome would be, 
according to the formula on p 213,  

! 
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Note the independence of successive trials (dice rolls) made the calculation of the joint 
probability easy.  
 
For an example of a similar computation for continuous RVs, see Example 5.11. Note the 
fact (worth remembering) that for an exponential RV X, P(X>t) = 

! 

e
"#t . 

 
In addition to joint and marginal probabilities, we need conditional probabilities.  We 
need to explain how the idea of conditioning is represented mathematically when the 
random variables involved are continuous. 
 
We had in Ch 2 P(A|B)=P(A ∩ B)/P(B)  p 78. 
If we define an event A as X=x and B as Y=y,  
we have P(X=x|Y=y) = P(X=x,Y=y)/P(Y=y) 
 
So it is not surprising that for continuous variables: 
 

! 

fY |X (y | x) = fX ,Y (x,y) / fX (x) , or in words,  
 
conditional density = joint density / marginal density 
 
Section 5.2 – Covariance and Correlation 
 
A useful concept in data analysis is to describe the intensity of the relationship between 
two variables.  One way to do this is the correlation coefficient – it measures the intensity 
of a particular kind of relationship, a linear relationship.  It is sometimes called the linear 
correlation coefficient to emphasize this emphasis.  Look at Fig 5.4 on p 221. If the two 
axes plot the data values of two variables X and Y, Fig 5.4 a) and b) show X and Y 
having a close linear relationship, while 5.4 c) shows no such relationship.  As we shall 
see the correlation coefficient for Fig 5.4 a,b,and c are approx 0.9, -0.9, 0 respectively.  
 



To describe the correlation coefficient, and at the same time provide a bit more 
machinery to work with jointly distributed random variables, we need the detail of 
section 5.2 (pp 219-224). 
 
The box on p 219 is just saying that if you want to know the average value of a function 
of X and Y, (that's the h(X,Y)), then of course you need to weight each possible value by 
the frequency with which that possible value occurs. It should make sense if you really 
understood E(X) from Ch 2.  
 
Now the function h() that gives us what we need on the way to the correlation coefficient 
is the function h(X,Y) = (X-µx) (Y-µy).  Notice that if X and Y tend to be on the same 
side of their means at the same time, h(X,Y) will be positive. If on opposite sides, h(X,Y) 
will be negative.  We define E((X-µx) (Y-µy)) as the covariance of X and Y.   We write 
COV(X,Y).  See box p 220 for definitions for discrete and continuous RVs. The box on p 
221 may be a little easier to remember, but the one on p 220 is more informative about 
what it actually calculates.  
 
Now, except for the sign of it, the covariance is not very informative about the strength of 
the relationship.  The problem is that the scale of the covariance depends directly on the 
particular units used for X and Y.  The covariance of height and weight in cms and grams 
would be much bigger than if the same data was expressed in meters and kilograms.   So 
for describing the intensity of linear  relationship between X and Y, we use the 
correlation coefficient – it is proportional to the covariance but always is between -1 and 
+1.   
 
Correlation (X,Y) = Covariance (X,Y) /(SDX SDY) and in symbols = σX,Y/σXσY 
 
There is a close relationship between correlation of 0 and independence.  See box p 223.  
 
 


