
Ch 3 – Sections 3,4,5  - Sampling Theiory 
 
Ch 6-9 are about "Inference" – how to generalize from a sample to a population.  Ch 5, 
and especially the sections we cover today are about the sampling theory that underlies 
all these inference methods. The sampling theory required the machinery of probabilities 
(Ch 2-Ch 4) as well as the tools of descriptive statistics (Ch 1).  Descriptive Statistics and 
Probability Theory have uses independent of inference, but they are also essential for 
inference per se.  
 
Sample variation – the variety of values we can get in  
i) sample selection, or in  
ii)  measurement.  
 
Note the population in i) is real, tangible, concrete, ....whereas in ii) it is hypothetical.  
The distinction is important in practice, but not for most of our course. 
 
In both cases, we describe our sample data as a sequence of IID random variables 
 
X1, X2, ...., Xn 
 
and the sample values are usually denoted, for theoretical discussion,  
 
x1, x2, ...., xn 
 
You should think of the Xi as the unknown outcome of an experiment, and the xi as a 
particular value that was obtained in one instance.  
 
Typically, we use the data {xi: i=1,2,...,n} to try to infer the common distribution of the 
Xi, or some feature of the distribution such as the value of a parameter (like µ or σ). 
 
When we are trying to estimate a parameter value, we concentrate the information in the 
sample data by calculating a function of the n data value – this function is called a 
statistic, and sometimes the value of the statistic is also called a statistic (a bit confusing, 
admittedly).  
 
Some notation to reduce confusion:   
 
µ and σ always represent the population values of the parameters mean and standard 
deviation. 
 

! 

X  or 

! 

x , and S or s, always represent the sample values of the mean and standard 
deviation. 

! 

X  and S are "statistics" in the sense of functions of the sample space, and 

! 

x  
and s are statistics in the sense of values that 

! 

X  and S might take.  
 
Note the definition of a random sample p 228.  If you think of drawing tickets from a hat, 
with replacement, you will have the idea.  The independence condition is important.  



Consider the following example:  population of 100,000 men, 100,000 women, draw a 
random sample of 100 women and 100 men.  Is the sample of size 200 a random sample 
from the population of 200,000?  Answer is NO, even though the chance is 1/1000 for 
every one of the 200,000 in the population to be selected into the sample. Note that 
samples of 99 mean and 101 women are impossible in this sampling scheme, even though 
they would be possible in a direct random sample from the 200,000.  
 
Sampling Distributions 
 
When a sample of size n is selected from a population, and a statistic is computed from 
that one sample (to estimate a population parameter say), the whole process has produced 
one number, the value of the statistic.  Now think of doing this whole process over and 
over again so it produces many numbers.  This collection of numbers would have a 
distribution, and this distribution is called the sampling distribution of the statistic.  
 
Note:  A sampling distribution is different from a sample distribution. A sample 
distribution is just the distribution from a single sample, wheras the sampling distribution 
of a statistic requires many samples to produce.  Of course, in practice we do not taqke 
many samples of size n  - but we still conceive of it so we can make probability 
statements about how variable our statistic might be (based on a single sample of size n).  
 
The idea of the sampling distribution of a statistic is difficult but very important. Spend 
some time sorting it out.   
 
Using Simulation to determine the Sampling Distribution of  the mean: 
Lets use our risky company payback distribution as our "population". 
 

Payback($) Probability Net Profit($) 
0.00 0.25 -1.00 
0.50 0.25 -0.50 
1.00 0.25 0.00 
4.00 0.25 3.00 

 
(Usually we do not know the population when we are trying to learn about it, but in this 
case we are studying the method of recovering some aspect of the population so starting 
with a known population makes sense.)  
 
Recall that it was the mean of the distribution that was important – the average return was 
computed to be $0.38 per dollar invested, and now lets see how close we might come to 
estimate this based on a sample of say size 10.   
 
Here are a few random samples of size 10  from this population: 
 
risky.sample() 
 [1] -0.5  3.0  0.0 -1.0 -0.5  0.0 -1.0 -0.5 -0.5  0.0 
 [1] -1.0 -0.5 -1.0 -1.0 -0.5 -0.5  3.0 -1.0 -1.0 -1.0 



 [1] -0.5 -0.5 -0.5 -1.0  0.0  3.0 -1.0 -1.0  3.0 -0.5 
 [1] -0.5  3.0 -0.5 -1.0 -1.0  0.0 -1.0 -0.5  0.0 -0.5 
 [1]  3.0 -1.0 -0.5 -1.0  0.0  0.0  0.0 -0.5  3.0  3.0 
[1] "and the sample means are" 
[1] -0.10 -0.45  0.10 -0.20  0.60 
> 
 
So if we were to use the sample mean to guess the population mean (which we know is 
0.38), we could be quite a way off – even in these five instances, we might have been off 
by as much as .83 (with -0.45).  Maybe we need a bigger sample.  Try n=25 and lets see 
how consistent they are: 
 
risky.sample(n=25) 
 [1]  0.0  0.0 -1.0  3.0  0.0 -0.5  3.0  3.0  0.0  3.0 -0.5  0.0  0.0 -0.5 -1.0 
[16]  0.0  0.0  3.0  0.0  3.0 -1.0  3.0  3.0 -0.5 -0.5 
 [1] -0.5 -1.0  0.0  3.0 -1.0  3.0  3.0  3.0  3.0 -1.0 -0.5  0.0  0.0 -0.5 -0.5 
[16]  3.0  0.0  0.0 -0.5  3.0  3.0 -1.0  0.0 -1.0 -1.0 
 [1]  0.0  3.0 -1.0 -0.5  3.0 -0.5 -1.0  0.0 -0.5 -1.0  3.0  3.0  0.0 -1.0  0.0 
[16]  0.0  0.0 -1.0  0.0  3.0  3.0  3.0 -1.0  0.0  0.0 
 [1]  0.0  3.0 -1.0 -0.5 -1.0  0.0 -1.0  3.0  0.0 -1.0 -0.5  3.0  3.0 -0.5  3.0 
[16] -0.5  0.0  3.0 -0.5 -0.5 -0.5  3.0 -0.5 -1.0  3.0 
 [1] -1.0 -1.0 -1.0  0.0 -1.0  0.0 -1.0  0.0  0.0  0.0  3.0 -0.5 -1.0  3.0 -0.5 
[16]  0.0 -0.5 -1.0  3.0 -1.0 -0.5 -1.0 -1.0  3.0  3.0 
[1] "and the sample means are" 
[1] 0.74 0.62 0.54 0.60 0.12 
 
This is better – the worst  of the five estimates this time is 0.74 and it is only .36 away 
from the true value.   
 
Lets try n=100. 
 
In this case the 5 averages are  
 
0.435 0.525 0.370 0.200 0.225 
 
and we can see that the worst one this time is only .18 away from the true value. 
 
So we have  
 
n worst error of estimate in 5 samples 
10  .83 
25  .36 
100                  .18 
 
Of course, these are just simulations, and if we redo the experiment, we would get 
something different:  



like  
 
n worst error of estimate in 5 samples 
10  .113 
25  .34 
100                  .145 
 
Nevertheless, it is clear that the larger samples give better estimates of the mean, since 
the errors are smaller for larger samples.  Now the question is, can we anticipate, without 
having to do this simulation, how bad the error might be, and in other words, how could 
the estimate of the mean would be, based on a single sample of size n.  The answer is yes. 
The surprising thing is that our one sample will provide an estimate of the mean, and, it 
will provide an estimate of how good that estimate of the mean is!   
 
The standard deviation of the sample mean is estimated by the standard deviation of 
the sample divided by the square root of n.  
 
sd(

! 

X ) = sd(X)/

! 

n  = sd(x)/

! 

n  approximately.   
 
For example, if our one sample of n=25 values is  
 
> risky.sample(n=25,m=1) 
 [1]  3.0  3.0  3.0 -0.5  0.0  0.0  0.0  0.0 -0.5 -1.0 -0.5 -1.0  3.0  3.0 -1.0 
[16] -0.5  0.0 -0.5 -1.0  0.0  0.0  0.0 -0.5  3.0  3.0 
[1] "and the sample means are =" 
[1] 0.56 
[1] "and the sample sds are =" 
[1] 1.589811 
 
Then our estimate of the population mean is the sample mean 0.56 and our estimate of 
the sd of this sample mean is 1.59/5 = .32. 
 
So for samples of only n=25,  with this population, we will have to live with typical 
errors in our estimate of about .32. 
 
Here is a redo of this with n=100. 
 
> risky.sample(n=100,m=1) 
  [1]  3.0 -0.5 -0.5  3.0 -1.0 -0.5  0.0 -1.0  0.0 -1.0 -1.0 -1.0 -1.0  0.0  3.0 
 [16]  3.0  3.0 -0.5  0.0 -0.5 -1.0  0.0 -1.0 -1.0 -1.0 -0.5  3.0  0.0  0.0 -0.5 
 [31]  3.0  0.0 -0.5 -1.0 -1.0 -1.0 -0.5  0.0  0.0  3.0 -0.5 -0.5 -0.5 -0.5 -1.0 
 [46]  3.0  3.0  0.0 -0.5  3.0  3.0  3.0  0.0  0.0  3.0 -0.5 -1.0  3.0  3.0  3.0 
 [61] -1.0  0.0  3.0 -0.5 -0.5  3.0 -1.0  3.0 -0.5 -0.5 -1.0 -1.0 -0.5 -1.0 -0.5 
 [76]  3.0  3.0  3.0 -1.0 -1.0  0.0  3.0  3.0 -1.0 -1.0  3.0 -1.0  0.0 -1.0  0.0 
 [91]  3.0  0.0  0.0  0.0  0.0 -0.5  0.0  0.0  3.0 -1.0 
[1] "and the sample means are =" 



[1] 0.46 
[1] "and the sample sds are =" 
[1] 1.630951 
 
This time our estimate of the population mean is 0.46 (better, remember the real one is 
0.38)  and we estimate that a typical error now is about 1.63/10 = .16.  Obviously the 
n=100 estimate is better than the n=25 estimate, but the useful thing is we can see how 
much better and decide if it is good enough for practical purposes.   
 
The theoretical result just used is given in the box on p 237 and proved on p 244.  But it 
is very simple to verify the square root law directly.  Assume X1 and X2 are IID with 
V(Xi) = σ2.  
 
V(X1+X2) =E(X1+X2)2 – E2(X1+X2) = E(X1

2)-E2(X1) + E(X2
2)-E2(X2)  

     since independence -> 0 covariance. (p 223) 
     =V(X1) + V(X2) = 2 σ 
 
So V(

! 

X ) = σ2/2 and SD(

! 

X ) = σ/

! 

2    
 
 (qed for n=2, and this argument extends easily to n>2. ) 
 
 
We can see that the sample mean 

! 

X  has a distribution whose mean is the population 
mean and whose sd is the (popualtion SD)/ 

! 

n =σ/

! 

n .  But what can we say about 
the shape of the sampling distribution of  

! 

X  ?  A very important theorem called the 
Central Limit Theorem (CLT) says it is approximately normal, with the approximation 
becoming increasingly precise as n gets larger.  See precise statement p 239. Note that we 
do not need the CLT for the results about mean and SD, even though they are included in 
the theorem on p 239.   It is the normality that is the main result.  
 
The population we were working with above – the risky company – had a distribution of 
returns that was very non-normal:  if X=Profit, P(X=-1)=.25 = P(X=-
0.5)=P(X=0)=P(X=3).  But lets look again at the mean of a sample of size 25 – we will 
simulate doing this 500 times and take a look at the distribution of the sample mean. 
 



 
 
This certainly is much more symmetrical than the original profit distribution and it is 
reasonable to suppose it is approximately normal. There is mild evidence of a bit of right 
skew.   Lets look at the n=10 version. 
 
 



 
 
This one (n=10) is quite skewed and the normal approximation is bound to be pretty bad.   
 
Now lets look at n=100. 
 



 
 
The symmetry is much better now than for n=10 and even better than n=25.   
 
The theorem says that as n grows the normal approximation gets better and better.  
 
Note is n that must grow, not m.  m is just the number of times we compute a mean and 
sample and it is large just to show the shape of the resulting distribution.  m was 500 
when n=10 gave that skewed result.  A million sample means based on samples of size 3 
will have a very skewed frequency distribution.  
 
 
The sample mean is a particular linear combination of IID RVs.   There are similar results 
for any linear combination of IID RVs.  See p 244.  In fact the theorem on p 244 does not 
require the variables to be identically distributed, although the most useful cases will 
assume this.  
 
 
Now lets use the CLT to find the chance of losing money with 25 risky companies like 
the ones we simulated – we are still assuming these company outcomes are independent 
of each other (an ideal that is hard to achieve in practice).  



Recall our "population" distribution  
 

Probability(P(X=x) Net Profit($) x 
0.25 -1.00 
0.25 -0.50 
0.25 0.00 
0.25 3.00 

 
Now if we sample 25 outcomes (25 companies), our average gain in the sample should be 
about $0.38 and the sample SD should be about  $1.56.   These numbers 0.38 and 1.56 
were not simulated, they were calculated from the above table.  We can also calculate 
that the SD of the sample mean should be 1.56/

! 

25  = $0.31.  In other words, the sample 
mean should have a mean of $0.38, an SD of $0.31 and the shape of the distribution 
should be approximately normal as a result of the CLT.  That is useful info – we can 
compute, for example, P(profit >0) = P(

! 

X >0) = P((

! 

X -.38)/.31>-.38/.31) = P(Z>-1.23) 
=1-,1093 = .89  from Table 3 in the text.  
 
In other words, we can compute the probability that we  make money if we have 25 of 
these risky companies and they operate independently.  We have an 89% chance to profit 
from the 25 companies even though there is only a 25% chance that any single company 
will profit.  If you refer back to the simulation recorded in the notes of Feb 14, where we 
simulated 100 instances of this 25 company portfolio, there were 87 that made money.  
So the theory worked pretty well.  (We experienced 87% when the chance calculated  
was 89%). 
 
So we can do something useful when we know the population – we can anticipate what 
the simulation would produce in this example.  But note that ALL we used in the 
calculation was the mean and SD of the population.  The actual formula for the 
population probabilities did not enter into the calculation except to give us the mean and 
SD.  This may suggest another use for this theory:  use the sample to estimate the 
mean and SD, and proceed as above assuming these mean and SD estimates are equal to 
the population ones.  Our answer will be approximate, but still useful.  If we had data on 
the profitability of  25 companies, but no knowledge of the probability distribution 
producing those profits, we could still do the above calculation, at least approximately. 
 
It is this strategy of using data to test hypotheses about an unknown population from the 
the data is a random sample, that Ch 6-9 is about – this in "inference" of sample to 
population.  
 
PS:  One technical detail that I did not cover in the above is that if the population 
distribution is normal, then so are all possible linear combinations, and in particular the 
sample mean has a normal distribution.  So a normal population gives a normal sampling 
distribution of the sample mean, and this is exact, not approximate.  Any other 
distribution the normality of the sample mean is approximate, with the approximation 
improving as the sample size increases.  
 



A bit of preview of Ch 6: 
 
When we know (or assume) the class of models for the population we are sampling, like 
assume normal, or assume gamma, or assume Poisson, we need to use the functional 
form of the model to relate the data to the parameters.  Often this reduces to using the 
sample mean and variance to estimate the population mean and variance, while the latter 
are known functions of the parameters.  So this gives a way of estimating the parameters 
from the data.  But this way does not always work.  Ch 6 talks about estimation of 
parameters and in particular how to make use of the class of parametric models 
applicable to the situation (if known or assumed to be known).  
 
 
 
 


