
Ch 7 – Estimation with Interval Estimates 
 
Preamble: 
 
Rather than jump right in to this chapter, I want to go through a series of sampling 
experiments using the bead sampler.  This population of coloured beads allows us to see 
an example of a physical random sample, and how the sampling variability requires our 
attention when we use the sample to infer something about the population.  A difference 
between this bead sampler and much of the discussion in Ch 7 is that the feature of 
interest in this bead population is a proportion (of white beads, for example) rather than a 
mean of a quantitative variable.  However, we have shown that our theory about 
estimating means of quantitative variables also applies to estimating proportions since a 
coding of population objects as 0 or 1 (not white or white, for example) allows the 
proportion to be the same thing as an average.  
 
The nice thing about the bead sampler is that the proportions of beads of various colours 
are known.  But we can imagine that this information is not known, and we selected a 
sample of 10,25,50 or 100 and in each case try to use the sample to inform us about the 
population – more precisely, to estimate the population parameters which in this case are 
the proportions of beads of various colours.   
 
Note that this population can in no way be thought of as a "normal" population.  Whether 
we code the beads as 0-1, or 0,1,2,...,8 (there are 8 colours), the population relative 
frequency of each code cannot be considered as a continuous frequency distribution on  
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"), and so it is not even a continuous distribution. We want to imagine that all we 
know about the population is that the proportions of the eight colours 
(white,green,red,black,violet,yellow,pink,blue) are some numbers p1,p2,...,p8 where each 

0≤pi≤1 and 
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" =1.  (Actually, if we did not know which colours were in the 

population, we could allow many more pi's and allow that some might be 0,  but to keep 
things simple, we assume we know the colours represented.)  
 
To make things a little bit realistic, lets imagine that the colours represent the intended 
votes of the electorate for eight candidates for president in a student society election. We 
will call the candidates by their color to avoid further confusion.  Now lets suppose that 
cadidate White has been working hard on the campaign and wants to know if he/she is 
likely to win.  An opinion poll based on a small sample of students random selected from 
the eligible students would produce a certain proportion of  intended votes for White.  
The sampling paddle can simulate this process – we will do this in class but I will 
describe one particular outcome here – in fact, since the information based on a small 
sample is likely to be unconvincing, I will take samples of 10, 25, 50 and 100 to see what 
happens as I increase the sample size.  (The 25 does not include the 10, etc – these are 
independent samples.) 



 
Sampling Outcomes 
 
Results of these samples are as follows: 
 
Sample Size   No of white    Estimated Proportion of White 
 10  3  .30 
 25  7  .28 
 50  28  .56 
 100       48  .48 
 
The estimates of the population proportion of Whites varies quite a bit – in the population 
there is a particular proportion that is the same for each of these four experiments.  The 
fact that the sample proportions vary is a result of sampling variation.  
 
Of course, if we take larger and larger samples, we could expect the variability to damp 
down.  But can we be more quantitative about the variability of the sample proportion 
that would be expected from a particular sample size?  
 
The SD of a sample proportion 
 
Since a sample proportion can be deemed to be a sample mean, we can say that the 
variability of the sample proportion can be estimated as s/
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n .  But what is s in these 
samples?  The population is very large but can be deemed to consist of a proportion p of 
1s and a proportion (1-p) of  0's.  Knowing this allows us to compute the SD in terms of p 
from the SD formula.  The mean of the population is p (can you see why?).   The 
deviations are (xi-p)2 and there are only two possible values for these:  (0-p)2 and (1-p)2, 
and we know the proportion of each in terms of p.  There are a proportion p of them like 
(1-p)2 and (1-p) of them like p2.  So the expected deviation is p*(1-p)2 + (1-p)*p2 = p(1-
p)*(1-p+p)=p(1-p).  This is the population variance (=E(X-E(X))2).  So the population 
SD = 
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p(1" p) .  In other words, if we knew p, we would not have to go through the 
general SD formula to get the SD.  For example, if p = 0.4, pop SD = 

! 

.4(1" .4) = .49.   
 
Now the SD of the sample proportion = SD of the population/

! 

n  and in this case it is 

! 

p(1" p)

n
 

 
Estimating the population proportion p 
 
Now when we sample a population of 0s and 1s, we do not usually know p.  But the 
sample does allow us to estimate it.  For example, from out sample size 100 selection 
noted above, we estimated p = 0.48.  So we can use this as an approximate value of p and 
say that the SD of this estimate (i.e. the estimate is 0.48 in this instance) is about 
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.48(1" .48)

100
=.025 



 
This means that we think our estimate of p, the 0.48, is likely within 1 or 2 SDs of the 
population value.  That is, our population p is probably somewhere in .48 ± .025 or, to be 
safer, .48 ± .050.  
 
Note what would have happened if we had relied on a sample of n=25?  We would have 

said our true population mean was in the interval .28 ± 2*
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.28(1" .28)

25
= .28 ±.08. 

This interval does not even overlap with the n=100 interval, so one of them is certainly 
wrong.  This can happen.  If we use mean ± 2SDs, we will only be correct 95% of the 
time.  Our example for n=25 was one of those 5% instances that can happen.  Usually 
(95% of the time) the population mean will lie in the interval computed from the sample 
this way.  
Notice one other thing about the n=25 example compared to the n=100 example.  In the 
n=100 example, the interval width was .05, while it was .16 in the n=25 example.  Bigger 
samples tend to give narrower intervals, and narrower intervals are better information 
about the parameter we are estimating, right?  
 
Revisiting the SD of a sample proportion 
 
When we computed the SD formula for 0-1 populations, did it look familiar?  It actually 
is the same as the formula for the Binomial SD when n=1, since 
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np(1" p)  = 
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p(1" p)  
in this case, or the SD of the Bernoulli RV.   (The n in this formula is not the same as the 
sample size here – every member of the population is either 0 or 1, whereas for the 
Binomial, the population can be 0,1,2,...,n. ) 
 
Choosing a multiple of SDs in estimating a population proportion 
 
But why do I use ±2 SDs?  Here is where the CLT is useful because it tells us that the 
sample mean (or sample proportion of 1s) has a Normal distribution, approximately.  In a 
normal distribution, approximately 95% of the values are within 2 SDs of the mean.  That 
is why I used 2SDs for the intervals above.  If I wanted to reduce the chance of being 
misled by a chance result, I could ask for an interval of values around the sample 
proportion (like .48) that was ±3SDs.  It turns out that such an interval will contain the 
population mean 99.7% of the time.  But the catch is that the interval is wider than a 2SD 
interval, and so there is a balance between how sure you need to be and how close the 
estimate should be. It is quite common to compute 95% interval estimates.  
 
Interpreting Confidence Intervals 
 
There is a name for these intervals:   Confidence Intervals.   Note that when you say a 
confidence interval for the population proportion is 0.48±0.050, you need to be careful 
about what probability you are implying.  The population mean does not vary – no matter 
how much we sample the population mean stays constant at the unknown p.  If p=0.5, 
then our confidence interval is a good one, but if p=0.4 it is not.  But the probability 
implied in the 95% concerns the sequence of intervals that one might get in repeated 



sampling of size n samples. Usually, the interval will contain the unknown but true 
population mean, but sometimes it will not.  See the figure on p 285.   
Extension of the CI estimation method to continuous data 
 
When we had a population of 0s and 1s, we had a short-cut method of computing the 
sample SD based on the sample proportion of 1's.  But when the population is a quantity, 
like Sales or GPA, we need to go back to the long formula for the sample SD. However, 
the rest of the procedure is unchanged, as long as we have large enough samples for the 
CLT to give good approximations.  (Rule of thumb n>30). See pp 281-286 in your text.  
 
Appendix 
 
Is it really true that a 95% confidence interval for a population mean, 
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x ± 2 s

n
, will 

contain the population mean in 95% of the samples?  
 
Here are some CIs based on 100 samples of size 25. In this case we were lucky and we 
have exactly 95 that contain the true mean (p=.5) in this case.  
 

 
 
R Program pthat produces this graph is given on next page ... 



> CIp 
function (m=40,n=25,p=.5)  
{ 
 index=1:m 
 count=0 
 pr=rbinom(m,n,p)/n 
 sd=(pr*(1-pr)/n)^.5 
 p.up=pr+2*sd 
 p.down=pr-2*sd 
 for (i in 1:m) { 
 # print(c(p.down[i],p.up[i])) 
    if (is.between(p.down[i],p,p.up[i])) {count=count+1} 
 } 
 plot(1:m/m,index,type="n") 
 for (j in 1:m) { 
  lines(c(p.down[j],p.up[j]),c(index[j],index[j])) 
  lines(c(p,p),c(0,101),lw=3,col="red") 
  } 
  print("number of intervals containing true p=") 
 print(count) 
 print("out of") 
 print(m) 
} 
 
To run it, just use  
CIp()  
while in R 
and to change parameters use  
CIp(m=100,n=50,p=0.2) 
 


