
Interval Estimates (Ch 7) 
 
Ch 7 is basically about interval estimates of parameters (population parameters of 
course).  The main technique for interval estimates is the Confidence Interval (CI). 
 
Recap of CIs for population proportions 
 
The program I was running in class on monday was CIp(), which generated confidence 
intervals for a proportion.  Actually, it was generating approximate 95% confidence 
intervals.  "Approximate" for two reasons – 1. it assumed the sample proportion had a 
normal distribution, but this is a Central Limit Theorem result which is only exact for an  
infinite sample size (in practice, n>30 is usually enough) – and 2.  The SD of the sample 
proportion depends on the unknown population sd (which depends on the unknown 
population value of p), and we estimated this using the sample p.  So obviously, both 
these approximations would tend to fail if the sample size were small (like 10, for 
example).  Now this is not a serious practical problem because the point estimate of  p 
using the sample proportion (of 1s, or of white beads), is very poorly estimated in small 
sample sizes, so the interval estimate is likely to be so wide as to be useless unless p is at 
least 50 or so (as our class experiment suggested).  
 
Consideration of CIs for population averages 
 
So now we need to discuss the situation of a population for a continuous random variable, 
and we are selecting a random sample of size n (=10,25,50, 100, or whatever)  in order to 
estimate a population parameter (such as the population mean).  
 
Since in this case it is possible to get reasonable quality information for small samples, 
we need to consider what can be done in this case (when the CLT cannot provide a good 
enough approximation). We want to estimate the population mean.  We start with  
 
Case 1: Population distribution is normal and population SD is known (Sec 7.1 in 
text) 
 
This case is detailed in the text in Section 7.1 (pp 281-289).   Apart from more detail 
about varying the confidence level, the calculation procedure is the same as we did in 
class for the population proportion.  But this time the normality of the sample mean is an 
exact consequence of the normality of the population.  And if the SD is known, we don't 
have to worry that the small sample is too small to estimate it well.  See the box on p 284.   
The 95% CI is sample mean ± 2* popSD/sqrt(n).  Here are the factors for other 
confidence levels – read from the Normal table in your book.  
 
Confidence Level  Factor 
90%    1.645 
95%    1.960 (almost = 2) 
99%    2.575 
99.7%    3.000 



 
In essence, we find a probability that 

! 

X  is within a certain distance from  µ, and after we 
observe 

! 

X =

! 

x , we turn the probability in to a statement about the distance of  µ from 

! 

x .   
 
As described on pp288-289, this strategy can be used for other statistics and parameters.  
 
Choice of Sample Size 
 
A common question of statisticians is "What sample size do I need?" and the statistician 
always answers "How much precision do you need in your parameter estimate?".  For 
example, suppose we want to determine if a person's reaction time is lower at mid-day 
than it is in the evening.  The measurement we would use for each individual is the 
difference in two reaction times.  We are trying to measure the average difference 
(evening reaction time – midday reaction time) for a population of individuals, and lets 
suppose we are able to select a random sample of individuals from this population, and 
we will base our information about reaction times on this sample.  How many individuals 
do we need in our sample?  The question about precision requires practical information 
about the context of the study – how much difference in reaction times would be an 
interesting and/or useful finding?  Now reaction times are typically around 0.2 seconds 
and can be measured, for an individual, to the nearest .01 seconds. So an average 
difference of .02 seconds might be deemed to be of interest.  In other words, if the 
average difference is .02 or more (assuming positive), we would have an interesting 
result.  This means we want a sample size that would ensure our CI width is less than .02, 
since then an average difference of .02 or more would give rise to a CI that does not 
include 0.  0 would not be a credible value for the average difference in that case, which 
would be an interesting result.  
 
Now the width of a 95% CI is 2*σ/

! 

n , so to make this less than .02, we can solve for n 
and have n≥10000 σ2.  
 
If we knew the variability (from one person to the next) of the difference in reaction time 
readings, we would have our required sample size.   Lets suppose σ=.02 seconds is 
known so that σ2=.0004 and n≥4 should be enough in this case to produce the required 
precision of estimate.  If we did not know the σ we would be stuck, but in this "Case 1" 
we assume we do know σ.  
 
The general strategy for sample size calculations is to equate the half-width of a 
confidence interval to the allowable error.  The different Cases are just to outline the 
different ways that a CI may be computed.  
 
Case 2.  Population distribution is Normal but σ  is unknown (Sec 7.3 in book) 
 
When σ was known, 

! 

x  is normal (Ch 5) and so is  z=(

! 

x -µ)/(σ/

! 

n ) .  But when σ is 
unknown, and must be estimated by s, z8=(

! 

x -µ)/(s/

! 

n ) is only approximately normal.  
The variability in s induces extra variability in z8 , and it turns out even the shape of the 



distribution of z8
 is different from Normal.  To emphasize this distinction, we will in 

future refer to this z8  as T and call its distribution the t-distribution.   The T statistic has 
exactly a t-distribution when the population distribution (of X) is Normal.  (Theorem p 
300).   Note that the t-distribution has only one parameter – the so-called "degrees of 
freedom".  In most cases, the degrees of freedom for the t-distribution is n-1, just 1 less 
than the sample size used to estimate σ.  
 
The t-distribution is bell shaped but not Normal!  See the figure on p 300.  The t has fatter 
tails than the standard normal, as you might expect from that extra variability in s.  But 
we still use a similar formula for the CI.  See bos p 302.  As you will see, the only effect 
on the CI of estimating σ with s is that the normal multiple (1.96 for a 95% CI) is 
replaced by a larger number from the tables of the t-distribution.  This number depends 
on the sample size since the degrees of freedom of t = n-1.  For example, if n=4, the 
degrees of freedom n-1=3 and the multiple for the 95% CI is (from Table A.8) 3.23.  In 
the Case 1 formula for the 95% CI, instead of σ one uses s, and instead of 1.96 one uses 
3.23.   
 
So a wider CI will usually result when the σ has to estimated by s.   
 
This theory about the t-distribution does depend on the population distribution (of X) 
being Normal.  However, this assumption is not critical in practice reasonable intervals 
will result from this method even if the population is a bit different from Normal.  
 
Case 3.  Population distribution not Normal, and σ  is unknown (Sec 7.2 in book).  
 
This is the case where we need to rely on the Central Limit Theorem saving the day.  The 
formula is very similar to what we did in Case 1 except that we replace σ by its estimate 
s, and do not worry about the extra variability!   Clearly we need a large sample for this 
to work – for two reasons.  We need s to be close to σ, and we need the Normal 
approximatio to be good enough.   See the box on p 292.   Our rule of thumb is that the 
CLT is good enough when n≥30.   Actually, the sample size for an adequate 
approximation depends on how non-normal the population is – if it is nearly normal, a 
sample as small as 10 may be enough, and if it is violently skewed, we may need n=50.  
 
Related Topics 
 
1.  Bootstrap Confidence Intervals 
2.  Confidence Intervals for Other Parameters than the Pop. Mean 
3.  Prediction Intervals 
 
1.  Bootstrap Confidence Intervals 
 
In the lectures before the midterm, we showed how the bootstrap could produce an 
estimate of the SD of any statistic based only on the data in the random sample.  Note 
that the values of the statistic from each bootstrap sample will also estimate the whole 
distribution of the statistic.  Of course, the centre of this distribution will be sensitive to 



the particular original sample we have, but the shape of this distribution may still be used 
to estimate a confidence interval for the statistic.  An example of this approach is 
described on pp 289-290.  Just be aware that there is a bootstrap approach that can be 
used for moderate sample sizes when the population distribution is unknown. 
 
2.  Confidence Intervals for Other Parameters than the Pop. Mean (Sec 7.4) 
 
We only discussed in detail the CI for a population mean.  But CI for other parameters 
are possible when certain model assumptions are satisfied.  p 288-289 gives the details of 
one example. A more important example is the content of Sec 7.4 in the book – CI for σ. 
 
First a simple fact that will help in future statistics courses as well as understanding this 
course.  If X ~N(0,1) then X2 ~ Chi-squared distribution on 1 degree of freedom (df). 

Moreover, if Xi~N(0,1) and independent, then 

! 

X
i

2

i=1

k

"  ~ Chi-squared distribution on k df.  

Now look at the box on p 308.  It says that the sample standard deviation S2, when 
multiplied by a suitable constant, has a chi-squared distribution on n-1 df, where n is the 
sample size.  Think of df as the number of independent observations – that should make 
the term "degrees of freedom" seem plausible. Note that while the summation in the 
boxed Theorem has n terms, it apparently only has n-1 degrees of freedom.  We lose one 
degree of freedom in estimating µ with 

! 

x .  In fact, if we did happen to know µ, and used 
it in the theorem instead of 

! 

x , the statistic shown would have a chi-squared distribution 
with n df.  
 
Anyway, we can use the theorem to say how close s is likely to be to σ, since the theorem 
describes (exactly) the distribution of the ratio S2/σ2.  The result is given in the box on p 
310.   
 
3.  Prediction Intervals 
 
Note that a confidence interval is a description of a reasonable range for a population 
parameter.  This is not the same as a reasonable range for the data itself.   Of course, the 
reasonable range for the data itself is the data itself!   But another way to ask the question 
about the range of the data is "What interval would contain the next observation with 
high probability (say probability 0.95)?"  The answer is called a prediction interval.  See 
the box on p 304.  Note that it is much wider than a CI for the population mean.  
 
Tolerance Intervals:  you  can ignore this extension of the prediction interval idea (for 
this course).  


