
STAT 270         March 26, 2007 
 
The plan for today is to introduce the idea of "regression", review 
"simulation", and illustrate how R makes these things easy to do.  
 
Although it is not compulsory in this course, I want to encourage you to try R. 
I will use R to illustrate regression and simulation, but you don't have to know 
R to understand the points I am making.  
 
So to start, here is how to get your own free copy of this amazing program – you 
do have to have your own computer or install privileges on one you can use. 
 
Go to http://cran.r-project.org/ 
and click on the operating system that your computer uses - then follow 
instructions to download R.   
 
After R has been installed (usually automatic with very little intervention), 
just click on the R icon and in 5-10 seconds you should see the R prompt (looks 
like ">"). 
 
Then you can issue commands at the ">" prompt. 
 
The first thing I want to show you is how you can predict one variable from 
another, assuming you have data available that estimates the relationship (i.e. 
pairs of data values (x,y) so that you can use x to predict y for values outside 
the data set.) 
 
Lets start by setting up an x and a y for which we know how the prediction of y 
from x should be, and we will see if the data alone can be used to make a good 
guess of this predictive relationship. 
 
Lets use the digits 1,2,...,10 for x and for y lets use x + noise where the 
noise is generated as independent values from a N(0,1) population.  
Then we will plot the result: 
 
x=1:10  # let x be a vector (1,2,...,10) 
y=x+rnorm(10) # let y be x with some N(0,1) noise added 
plot(x,y)  # the simplest plot 
 
Note that R replaces the thing on the left of the = sign with what is on the 
right – the above defines x and y. Also, note that we plot(x,y) not plot(y,x) 
since the convention is to have the predicted thing as the "ordinate" and the 
predicting thing as the "abcissa". Finally, the # sign tells R to ignore what 
follows on the line – this is useful to make comments in a program.  
 
In Chapter 5, we introduced the correlation coefficient as a measure of "linear 
association" between two variables. Calculating it is easy in R: 
 



cor(x,y) # the correlation between vector x and vector y 
pause() #this just stops execution until you press return 
 
The positive correlation confirms what we see in the plot, that knowing x does 
give you a pretty good idea of the associated y, although it would be nice to 
have a formula to do this. This is what "regression" does. But before getting 
into that, note that a more informative plot can be produced by adding a little 
more info: 
 
plot(x,y, xlab="this is x",ylab="this is y",main="Title of Plot", col="red") 
 
Now lets see what R gives us for estimating a "linear model" for predicting y 
from x. (We talk of "regressing y on x" in order to find a predictive 
relationship for y based on x.) 
 
lm(y~x)  # simple linear regression 
 
This tells us the intercept and slope of a line that can be used to poredict y 
from x. But there is much more info available from R.  To capture it, we need to 
provide a name for the output of the "lm()" command. 
 
hold=lm(y~x)  # "hold" is just my name for the output. You can use whatever 
 
In R, to find out what is in "hold" we use  
 
attributes(hold) # this shows how to get more detail from "hold" 
 
For example, you can find the predicted values of y from either of the commands  
 
hold[5] 
hold$fitted 
 
Now it is natural to graph the data along with the predicting line: 
 
plot(x,y) # just to replot the data 
lines(x,hold$fitted) # add the regression line to the plot 
pause() 
 
Since we arranged the straight line to be a good predictor, it is not surprising 
that it does a decent job.  But in practice we sometimes want to look at what 
are called "residuals" which are the errors of prediction IF we were to try to 
predict y from x for those x that are in our data set (and we know y).  
 
hold$residuals 
 
and we can plot these as well: 
 
plot(x,hold$residuals) 



 
Note that if these is a pattern to the residuals (y-pred(y)) as a function of x, 
then we can improve our prediction of y from x.  So a good prediction model 
would show no pattern in this residual plot.  
 
Lets illustrate this by forming a new predicted variable w. 
 
w=x+2*x^2+10*rnorm(10) 
plot(x,w) 
hold.new=lm(w~x) 
lines(x,hold.new$fitted) 
pause() 
 
This fit is lousy, and the residual plot would emphasize the shortcoming of the 
fit.  
 
plot(x,hold.new$residuals) 
 
The plot shows that we need to add a curved portion to the model for a good 
predictor.   
 
How is the prediction line chosen?  It is chosen to minimize the errors of 
prediction, in some sense. Since it is impossible to reduce all the errors to 
zero, with a straight line model (in most data sets), we need a way to make the 
errors small as a group.  The usual way to do this is to minimize the sum of 

squared errors. i.e. 
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This quantity (in our linear model example) can be computed as  
 
sum((hold$residuals)^2) 
 
although we do not need it for anything. 
 
What is more useful is the size of the prediction errors.  Note that the average 
prediction error is 0. 
 
mean(hold$residuals) 
 
since if it were not zero, we could move the line a bit to reduce the sum of 
squared errors. 
 
So we cannot use the mean residual to measure how good our prediction is. 
 
But the SD of residuals does tell us the size of a "typical" residual (error). 
 
sd(hold$residuals) 
 



and this tells us how far off the true y we are likely to be if we use x to 
predict y.  
 
In judging the size of the errors, since we have an estimate of the mean and sd 
of them, it would be helpful to know the distribution – is it normal?  
 
hist(hold$residuals) 
 
If we can assume normality of the residuals (which will depend on the data 
itself) we can make statements about the size of error that would not be 
exceeded 95% of the predictions.  
 
 
What follows is an example of the outputs from the commands listed above: 
 
 


