
Some Loose Ends from Ch 1-9 
 
We are (essentially) finished the required material from the text.  The program from now 
until April 5 is: 
 
Wed. March 28  - Loose Ends from Ch 8 and 9.  
Fri.March 30  - Review for Quiz Monday (and Final Exam) 
Mon. April 2 - Quiz 
Wed. April 4 – Feedback from Quiz, tips for Final Exam 
 
Loose Ends: 
 
1.  Small sample tests for proportions (pp342-343):  It is possible to use the Binomial 
distribution to produce testing probabilities for samples too small to use the CLT 
approach.  But I have skipped over this since it is rare to need it – there is so little 
information about p in a sample of size 10 or 20 that to estimate it with this sample makes 
no sense.  Suppose p = 0.5 and consider a random sample of size n=16.  Then

! 

ˆ p  has a 
mean of 0.5 and an SD of (0.5*(1-0.5)/16)1/2 = .125, so a 2 SD interval for 

! 

ˆ p  would be 
(.25, .75).  A 95% CI for p would be about this same width – don't you agree it is not 
precise enough to be useful? By the way, do you see why (.25,.75) is not a 95% CI here?  
There are two reasons.  One is that the 95% CI for p is centered at 

! 

ˆ p , not p – if we knew 
p we would not need a CI to estimate it!  The other reason is that since the n=16 is too 
small for the CLT to give a good approx to Normality, and the interval of this width 
based on a sample of size n=16 might not have a 95% probability of including the 
population value p.  
 
We are not saying the Binomial model is useless!  It tells you want kinds a sequences are 
likely – for example, how likely is it that drug A gives better results than drug B in five of 
the first six patients is a clinical study, if drug A is not actually more effective than drug 
B in a larger group of similar patients?  (Answer:  about 6/128 or 12/128 depending the 
context of the question).  
 
2.  Statistical vs Practical Significance ( p 353-354):  In statistics significance is a 
jargon word with a special meaning – unfortunately it does not mean "important".  A 
"statistically significant result" is one in which the data provide evidence to reject the null 
hypothesis.  The idea (admittedly a weak rationale) is that we tend to learn something 
new (and "significant") when we find out that our null hypothesis is not true.    
 
An even more difficult aspect of the theory of hypothesis testing is the fact that the 
conclusion depends on the sample size even fixing the P-value.  Suppose we have a huge 
sample n=1000 and reject the null hypothesis.  Since large samples provide very precise 
information about parameters, we might find that even if the hypothesis is only slightly 
wrong, and negligibly so, we reject it!.  One might argue that all null hypotheses are 
wrong and we just need a large enough sample to prove it.  So we need to be wary of 
rejecting null hypotheses when we use very large samples.  .... A related problem arises 
when we accept the null hypothesis for a very small sample.  In this case we need to b 



wary of accepting a null hypothesis with a small sample since the hypothesis could be 
seriously wrong but our sample not large enough to detect that situation.   
 
Add to this the arbitrary choice of the type one error (α) and we can see that there is a lot 
of judgment required in interpreting hypothesis tests.  This simple approach to hypothesis 
testing is better thought of as "credibility" testing than a rigorous method of decision 
making.  
 
3.  Pooled Estimates of SD in two-sample tests (pp 376-377)  I reviewed in class why 
the Var of a difference was the sum of the Vars of the things differenced.  When it is 
reasonable to assume the two variance estimates are estimating the same variance (that is, 
when the two populations can be assumed to have the same variance), then we may take 
advantage of this bit of knowledge by pooling the two estimates to form one "better" 
estimate.  This is described on pp 376-377.  But we almost never know that two 
population variances are equal in a situation where we are interested in the difference of 
means, and so this is a dangerous assumption,  Moreover, the actual advantage is slight 
except in very small samples.  But in very small samples the data gives no hints to 
confirm the equal variance assumption!  Better not to use the pooled variance.  
 
4.  Analysis of paired data: 
 
Suppose you have reaction time measurements for twenty class members before and after 
drinking three cups of strong coffee!  An interesting question is whether the reaction time 
increases or decreases.  Obviously the first thing to do with the data is to compute the 
twenty differences.  Then we would test if the mean difference (underlying the sample 
data) was zero or different from zero.  This is just a one-sample procedure (Ch 8, not 
Ch9).  So paired data is usually better  analyzed as one sample of difference rather than 
two independent samples . 
 
5.  Differences between two population proportions (pp 391-397):  There is really 
nothing new here – just follow the procedure for the difference of two population means.  
Of course, you use the short-cut formula when estimating the two sample SDs. 
 
 


