38. Review Example 2.23. If you understand the two-type calculation, you will have no problem with the extension in part c). For part d), you will need $P\left(A^{\prime}\right)=1$ $P(A)$.
39. Again, understanding what the $\mathrm{C}_{\mathrm{k}, \mathrm{n}}$ (the other version of the combinatorial symbol) represents in terms of a selection will provide the interpretation.
40. (1 or 2) or (3 and 4)
41. Keep in mind that two errors can sometimes cancel each other out and produce a correct signal.
42. Note the assumption of independence when the test is applied to two different blood samples from any one individual. Also, there is just one tests being described - the phrase "both tests" refers to one test performed twice for a particular individual. This problem is an application of the basic rules of probability calculus:
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$P(A \mid B)=P(A \cap B) / P(B)$
and the useful derived relationship
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})+\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)$
Of course, these general rules have special cases when A and B are independent or mutually exclusive.
