On to Ch 2: Discrete Random Variables (General)
RVs - variables that take numerical values according to some random mechanism
random mechanisms: coins, dice, sports contests, lifelength, stock value, daily sales, weather, insurance claims, gas consumption, airline bookings,

We use X to stand for the random function which generates values often denoted by x . e.g. for coin, a rv H might take successive values $\mathrm{h}, \mathrm{h}, \mathrm{t}, \mathrm{t}, \mathrm{h}, \ldots$

The nature of a rv is summarized by its probability distibution.
Probability distibutions (and rvs) can be specified by a list:

x	$P(X=x)$
$---1-------1$	
0	.12
1	.25
2	.34
3	.29

but we often have a functional form for these probabilites, like
$P(X=x)=\left[.9^{* *}(x-1)\right]^{*}(.1)$ for $x=1,2,3, \ldots$
These probabilites models are a great convenience, and allow us to approximate many random phenomena. All we need to do is specify, or estimate, a parameter value in a functional form like
$P(X=x)=\left[p^{* *}(x-1)\right]^{*}(1-p)$ for $x=1,2,3, \ldots$
To use this device however, it is necessary to know what models fit which situations. We get into this in Ch 3 .

Ex 2.1-4: exam with 4 questions, 3 answers each to choose from.
X is the number correct, $X=0,1,2,3,4$. Assume random choice of answers.
$\mathrm{P}(\mathrm{X}=\mathrm{x})=$?
(2/3)**4 $\quad=.20$ for $\mathrm{x}=0$
$4(2 / 3) * * 3(1 / 3) * * 1=.40$ for $x=1$
$6(2 / 3) * * 2(1 / 3) * * 2=.30$ for $\mathrm{x}=2$
$4(2 / 3)^{* *} 1(1 / 3)^{* * 3}=.10$ for $x=3$
$(1 / 3)^{* *} 4=.01$ for $x=4$ sums to 1.01 becasue of rounding.
Ex 2.2-4 Box 1 1,2,3,
Box 2 1,2
X number selected from box 1 and put in box 2
Y number subsequently selected from box 2 and put in box 1
$P(X=1, Y=1)=1 / 3 * 2 / 3=2 / 9$
$P(X=1, Y=2)=1 / 3^{*} 1 / 3=1 / 9$
$P(X=1, Y=3)=0$
$P(X=2, Y=1)=1 / 3 * 1 / 3=1 / 9$
$P(X=2, Y=2)=1 / 3 * 2 / 3=2 / 9$
$P(X=2, Y=3)=0$
$P(X=3, Y=1)=1 / 3^{*} 1 / 3=1 / 9$
$P(X=3, Y=2)=1 / 3 * 1 / 3=1 / 9$
$P(X=3, Y=3)=1 / 3^{*} 1 / 3=1 / 9$
is joint distribution.
$P(Y=1,2,3)=4 / 9,4 / 9,1 / 9$
is marginal

$$
P(X=1 \mid Y=1)=P(X=1, Y=1) / P(Y=1)=2 / 9 / 4 / 9=1 / 2
$$

A Note on Expected Values: Just an average of population values:
If population is $\{1,1,1,2,2,2,2,3,3,4\}$ then expected value is just sum of these numbers $=21$ divided by the number of numbers $=10$ or $21 / 10=2.1$

That is, if X is a randomly selected value from this population, then $\mathrm{E}(\mathrm{X})=2.1$

Note that the 21 could have been derived by
$1 \times 3=3$
$2 \times 4=8$
$3 \times 2=6$
$4 \times 1=4$
and sum is 21 . So $E(X)=$ sum of x time frequency of x divided by n $=$ sum of $\mathrm{xp}(\mathrm{x})$
since $p(x)=$ frequency of x / n
$E\left(X^{* * 2}\right)=$ sum of $X^{* * 2}$ times $p(x)$
$E(a X+b Y)=a E(X)+b E(Y)$ see problem 2.4-6
$\operatorname{Var}(a X+b Y)=a * * 2 \operatorname{var} X+b^{* *} \operatorname{var} Y+2 a b \operatorname{Cov}(X, Y)$ Section 2.8
Note correlation is the average standardized cross product.

A note on programming MINITAB:
To simulate 1000 values of a discrete distribution like
x 1,2,3,4
$P(X=x) .2, .3, .4, .1$
Use a program like this:
set c1
1,2,3,4
end
set c2
.2, .3, .4, . 1
end
random 1000 c3;
discrete c1 c2.
tally c3;
percents.
histogram c3.
This will give you the empirical distribution of the simulated data and draw a histogram.

To move the output to a word processor, just cut and paste. To move the graph, use the EDIT/ COPY GRAPH commnad and them paste.

The program can be entered sequentially, either by commands or by menus, or as a complete program.
To do the latter, you need to put the commands in a text file,
use the additional initial commands

MACRO
program_name
and add at the end of the program

ENDMACRO

Then save the whole file into the macro folder in MINITAB, and execute the program using the commnad \%program_name.

If you cannot do this because you are using a write protected disk (as in the assignment lab) then put the commands on a diskette, and provide the path to the program. The way you run it in MINITAB is then
\%path\program_name

Note for Problem 2.6-4 just use MINITAB commands

MEAN
STDEV
and note that you can do componentwise arithmetic like
Let $\mathrm{C} 2=\mathrm{C} 1 * \mathrm{C} 1$ or Let $\mathrm{C} 2=\mathrm{C} 1 * * 2$

Section 2.9: Conditional Expected Values
$E(Y)=E(E(Y \mid X))$
Suppose X, Y have the following joint distribution:
$X Y \quad P(X, Y)$
11.25
12.20

13 . 10
21.30

22 . 10
23.05
$\mathrm{E}(\mathrm{Y})=1 *(.25+.30)+2 *(.20+.10)+3 *(.10+.05)=.55+.60+.45=1.6$

Now $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=1)=(1 * .25+2 * .20+3 * .10) / .55=.95 / .55=1.727$
and $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=2)=\left(1^{*} .30+2 * .10+3 * .05\right) / .45=.65 / .45=1.111$

But $E(Y)=E(E(Y \mid X))=(1.727 * .55+1.444 * .45)=.95+.65=1.6$

