STAT 280
Sept 19, 2001
More Ch 3 ... More Discrete Probability Models
Assignment: For Wed at class or tutorial.
$3.1-10,3.2-10,3.3-4,3.4-4,3.5-10,3.6-4$
Note typo in first e-mail.
Recall Bernoulli trials Indept sequence of bernoullis:
Binomial: Fix $n, X=$ no of successes where $P($ Success $)=p$ fixed e.g. How many winners with 1 ticket in 1000 lotteries? X X in range $0,1,2, \ldots \mathrm{n}$

Geometric: Bernoulli trials again. But number of trials is random variable
this time. How many trials til first success? P(success)=p fixed.
See p 111. For $X=x$, must fail $x-1$ times and then win.
$P(X=x)=p(1-p) * *(x-1) \quad x=1,2,3, \ldots$
e.g.1 How many lotteries til major prize?
e.g.2 P(fatal accident) = p How many drives?

Hypergeometric:
Recall Binomial application to sampling a large population: With or without replacement does not matter.
Small population, does matter
Let X be number in random sample of a particular kind, where sampling is without replacement, from a population of size N.

X is Hypergeometric. p 117
$P(X=x)=r C x .(N-r) C(n-x) / N C n \quad x=\max (0, n-(N-r)), \ldots \min (n, r)$
example: 20 light bulbs - 3 are faulty
sample 5 of them: Let X be number faulty in sample of 5 .
$P(X=x)=3 C x .17 C(5-x) / 20 C 5 x=0,1,2,3$

```
P(X=1) = 3C1 . 17C4 / 20C5 = 3.(17.16.15.14/24)
/(20.19.18.17.16/120)
    =.46
Binomial? n=5, p=.15 table p 404 -> . 39 for P (X=1)
Consider sample of 20, SD = 0! but for Binomial SD = sqrt (20
*.15*.85)=1.6
Multinomial: sample n things with replacement from pop of k kinds
of things.
sample is vector:
20% Green, 50% blue, 30% red. Sample 5 things -> B,G,G,R,B
P(2G,2B,1R)= ? see p 121
Relationship to Binomial. 2 kinds.
Poisson Random Variable: number of instances of something
p 125 X = number of events
P(X=x) = exp(-mu) mu**x/x!
example. Murders in Vancouver: 10 per year
How many in 1 month? average is 10/12 = mu
P(X=0) = exp(-10/12)=.43
P(X=1)= exp (-10/12) (10/12)=.36
P(X=2) = exp (-10/12) (10/12)**2 / 2! = . 43 *.15
Relationship to Binomial: p small, n large, approaches Poisson
with mu=np
```

