Midterm is Wed Nov 7.
Assignment for October 24, 2001
Ch 5: 5.2-4, 5.3-6, 5.4-2, 5.4-10
Ch 6: 6.1-8, 6.2-8, 6.3-4, 6.4-4, 6.5-6, 6.6-4.
Read Ch 5 and Ch 6 (and the www notes as well)
Today: Ch 5 topics: review of
density (pdf) and cumulative dist (cdf) (5.1)
expected value (5.2)
distribution of function of a RV (5.2)
simulating distribution with known cdf (5.3)
joint distributions (5.4)
Exercise 5.1-5
$\mathrm{F}(\mathrm{x})=1-e^{-.2 \times x}$ for $\mathrm{x}>0$
a) $\mathrm{P}(5<\mathrm{X}<10)=\mathrm{F}(10)-\mathrm{F}(5)=1-e^{-.2 \times 10}-\left(1-e^{-.2 \times 5}\right)=e^{-1}-e^{-2}=.23$
b) $\quad \mathrm{P}(\mathrm{X}>10)=1-\mathrm{P}(\mathrm{X}<10)=e^{-2}=.135$
c) $.2 e^{-.2 \times x} \mathrm{x}>0$

Exercise 5.2-7
$X \sim U(0,1)$ and $Y=-\ln (X)$. pdf of Y ?
$\mathrm{P}(\mathrm{X}<\mathrm{x})=\mathrm{x}$ for $0<\mathrm{x}<1 . \mathrm{P}(\mathrm{Y}<\mathrm{y})=\mathrm{P}(-\ln (\mathrm{X})<\mathrm{y})=\mathrm{P}(\ln (\mathrm{X})>-\mathrm{y})=\mathrm{P}\left(\mathrm{X}>e^{-y}\right)=1-e^{-y}$
So Y is exponential with mean 1 and pdf is e^{-y}.
Or, Use p 207:
$\mathrm{g}(\mathrm{y})=1 .\left|\frac{d x}{d y}\right|$ But since $\mathrm{y}=-\ln (\mathrm{x}), \mathrm{x}=e^{-y}$ and $\frac{d x}{d y}=-e^{-y}$ so $\mathrm{g}(\mathrm{y})=e^{-y}$
Expected value:
$\begin{array}{lll}\text { Suppose } & \mathrm{X} & \mathrm{P}(\mathrm{X}=\mathrm{x}) \\ & 1 & .3 \\ & 2 & .5 \\ & 3 & .2\end{array}$
The Expected Value of X is just the mean in the population:
$\mathrm{E}(\mathrm{X})=1^{*} .3+2^{*} .5+3^{*} .2=1.9$
$E(X)=\sum_{x} x P(X=x)$
What if $\mathrm{P}(\mathrm{X}=\mathrm{x})$ is approx $=\mathrm{f}(\mathrm{x}) \Delta \mathrm{x} \ldots$...where $\mathrm{f}(\mathrm{x})$ is pdf
Then, $E(X)=\int_{x} x f(x) d x$
Simulating X:
Recall that is X is a rv with $\operatorname{cdf} \mathrm{F}_{\mathrm{x}}(\mathrm{x})$, then $\mathrm{F}_{\mathrm{x}}(\mathrm{X}) \sim \mathrm{U}(0,1)$
So if we are given $\mathrm{F}_{\mathrm{X}}(\mathrm{x})$, we can use it to simulate X .
To simulate 100 random values of $\mathrm{X} \ldots$
Method: Generate a sample of size 100 from the $\mathrm{U}(0,1)$ distribution.
MTB > rand 100 c 1 ;
SUBC> uniform 01.
MTB > dotp c1
Character Dotplot

```
.:::. : .. ...: . : :..
```


MTB > dotp c2

Character Dotplot

```
        :
        .:
        :: .
        :: .: .:
```


How to do the cdf inversion in MINITAB?
I'll send you a program.
Joint Probabilility Distributions:
I gave an example of a discrete joint distribution and discussed the
Relationship between the joint and conditional distributions associated with the example.
This was a preamble to discussing joint and conditional distributions of continuous rvs.

