Method for determining estimator formula for a parameter when the pdf involving the parameter is known:

Example: Uniform (0, $\theta$ ) Data $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{7}$


How to estimate $\theta$ ? Max + a bit?
Max + Min?
$2 *$ Median?
Many methods, and criteria help to sort out which is best.
But sometimes optimization not possible - use ad hoc ....
Method of Moments.
$\mathrm{E}(\mathrm{X})=\theta / 2$ is known. But $\bar{X}$ (sample mean) estimates $\mathrm{E}(\mathrm{X})$.
Set $\bar{X}=\hat{\theta} / 2$ and solve for $\hat{\theta}$
So $\hat{\theta}$ (est of $\theta$ ) is $2 * \bar{X}$.

See example 6.6-2 for less trivial example.

Chapter 7: Counting Processes and Queues

Context: Count of events as they occur. Usually continuous time.
$\mathrm{N}(\mathrm{t})$ : number of events that occur during $(0, \mathrm{t})$
$N(t)$ is a rv for each $t$. The distribution of $N(t)$ usually depends on $t$.

Examples: phone calls, computer failures, earthquakes, traffic accidents, births, deaths, insurance claims, e-business orders, ...

Simpler case introduced in Section 7.1: Discrete time, $\mathrm{t}=1,2,3, \ldots$

Time intervals such as minutes, days or months instead of continuous time. Call these time "frames".
Text uses different notation for this particular discrete time model:
$\mathrm{X}(\mathrm{n})$ instead of $\mathrm{N}(\mathrm{t})$
Bernoulli Counting Process: each frame has event with prob p
$\mathrm{X}(\mathrm{n})$ has $\operatorname{Bin}(\mathrm{n} ; \mathrm{p})$ distribution.


In what frames did "events" occur? How many frames does it take for a change in $\mathrm{X}(\mathrm{n})$ ? The number of frames from one event to the next event has a geometric distribution and this explains Theorem 7.1-3, p 274.
$($ Note time $=$ number of frames $x$ frame width $)$

Suppose we are actually observing a continuous time process, like a telephone exchange. An event is a call.
Calls arrive at rate $\lambda$ per minute. Suppose frame is 1 minute. Then the p in the Bernoulli counting process is also $\lambda$. But note that $\lambda$ must be less than 1 in this model - the frame-based approximation to the continuous time process will not be useful if events occur more than once per frame, on average. If $\lambda$ were 5 per minute, we would need a smaller frame, say 1 second, and then the $p$ would be $1 / 12$ so that in 60 seconds we would still get 5 events per minute, on average.

Is this a Markov chain? Yes, because it has the Markov property. Informally: Future indept of past given present.

What is transition matrix? See p 269
Row associated with state $\mathrm{k}, \mathrm{k}=0,1,2, \ldots$ representing count
$0,0,0 \ldots, 1-\mathrm{p}, \mathrm{p}, 0,0,0$ where the $1-\mathrm{p}$ is in the kth position, $\mathrm{k}=0,1,2, \ldots$
$P[X(n)=k \mid X(n-1)=k]=1-p$ for $n=2,3,4, \ldots$ and $k=0,1,2, \ldots$. And
$\mathrm{P}[\mathrm{X}(\mathrm{n})=\mathrm{k}+1 \mid \mathrm{X}(\mathrm{n}-1)=\mathrm{k}]=\mathrm{p}$ for $\mathrm{n}=2,3,4 \ldots$ and $\mathrm{k}=0,1,2, \ldots$.
$P[X(n)=k+2 \mid X(n-1)=k]=$ ? for $n=2,3,4 \ldots$ and $k=0,1,2, \ldots$.
Suppose we are actually observing a continuous time process, like a telephone exchange. An event is a call.
Calls arrive at rate $\lambda$ per minute. Suppose frame is 1 minute. The the p in the Bernoulli counting process is also $\lambda$. But note that $\lambda$ must be less than 1 in this model - the frame-based approximation to the continuous time process will not be useful if events occur more than once per frame, on average. If $\lambda$ were 5 per minute, we would need a smaller frame, say 1 second, and then the p would be $1 / 12$ so that in 60 seconds we would still get 5 events per minute, on average.

Poisson Process: Extend Bernoulli Counting process by considering continuous time (in which frame size is 0 (or dt)) Call count $\mathrm{N}(\mathrm{t})$.
(Vertical lines should be omitted since change instantaneous).
Note that rate of 1 per second is a constant average rate, but that at any time t , the number of events that occurs is $\mathrm{N}(\mathrm{t})$ and $\mathrm{N}(\mathrm{t}) / \mathrm{t}$ is not constant.

$\mathrm{P}(\mathrm{N}(\mathrm{t})=\mathrm{x})=$ see Poisson with mean $\lambda \mathrm{t}$ on p 277.
$\lambda$ is the average rate of events per unit time.

Note conditions for Poisson to apply:
i) independent increments
ii) stationary increments
iii) one event at a time
iv) prob of event in dt is $\lambda \mathrm{dt}$
can be made rigorous and then i)-iv) IMPLY Poisson.

These conditions can be used for a mental check of Poisson context.

Example 1: telephone calls at SFU switchboard 291-3111
Example 2: students arriving at B lot from 9-10 am Wed.
Example 3: number of customers arriving at Safeway 9-10 am Wed.

Time between events: "interarrival times"

Note from Poisson pmf,
$\mathrm{P}(\mathrm{N}(\mathrm{t})=0)=e^{-\lambda t} . \quad$ Let T be the time until the first event.

Since $\{N(t)=0\}$ is the same event as $\{T>t\}$
$\mathrm{P}(\mathrm{T}>\mathrm{t})=e^{-\lambda t}$ and $\mathrm{P}(\mathrm{T} \leq \mathrm{t})=1-e^{-\lambda t}$

This proves $T$ is exponential. In fact can show ( p 278 ) that all the interarrival times have this same exponential distribution.


In fact, $\left\{\mathrm{T}_{\mathrm{i}}: \mathrm{i}=1,2,3, \ldots\right\}$ are IID exponential $(\lambda)$ (mean is $\lambda^{-1}$ )
Poisson Process with rate parameter $\lambda$ (i.e. mean $\lambda t$ ) has
Interarrival time that are exponential with rate parameter $\lambda$ (i.e. mean $\lambda^{-1}$ )

What about waiting times for the Poisson Process? Gamma. (p 281)

Note that $\left\{\mathrm{W}_{\mathrm{n}}>\mathrm{t}\right\}$ is the same event as $\{\mathrm{N}(\mathrm{t}) \leq \mathrm{n}-1\}$
CDF of $W_{n}$ can be defined in terms of sum of Poisson probs (p 281).
Differentiate CDF of Wn to get Gamma density.
Note: This representation of CDF of Gamma is a finite series.

How can $\mathrm{T}_{1}$ have the same distribution as $\mathrm{T}_{2}$ ?

Memoryless property of exponential. (p 239)
$\mathrm{P}\left(\mathrm{T}_{1}>\mathrm{t}+\mathrm{s} \mid \mathrm{T}_{1}>\mathrm{s}\right)=\mathrm{P}\left(\mathrm{T}_{1}>\mathrm{t}\right)$

Problems to try 7.2-4, 7.1-4

