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6.6 Methods of Moments Estimation

Method for determining estimator formula for a parameter when the pdf
involving the parameter is known:

Example: Uniform (0,θ)   Data X1, X2, …., X7

             |                                                                                |

0 θ

How to estimate θ ?  Max + a bit?

                                  Max + Min?
                                  2*Median?
Many methods, and criteria help to sort out which is best.

But sometimes optimization not possible – use ad hoc ….
Method of Moments.

                               
E(X) = θ/2 is known. But X  (sample mean) estimates E(X).

Set X  = ˆ θ 
2  and solve for ˆ θ 

So ˆ θ  (est of θ)  is 2* X .

See example 6.6-2 for less trivial example.

Chapter 7:  Counting Processes and Queues

Context:  Count of events as they occur.  Usually continuous time.
    N(t):  number of events that occur during (0,t)

    N(t) is a rv for each t.  The distribution of N(t) usually 
    depends on t.

Examples: phone calls, computer failures, earthquakes, traffic accidents,

births, deaths, insurance claims, e-business orders, …

Simpler case introduced in Section 7.1:  Discrete time, t=1,2,3,…



Time intervals such as minutes, days or months instead of continuous
time.  Call these time “frames”.
Text uses different notation for this particular discrete time model:
X(n) instead of N(t)
Bernoulli Counting Process: each frame has event with prob p

X(n) has Bin(n;p) distribution.

In what frames did “events” occur?  How many frames does it take for a
change in X(n)? The number of frames from one event to the next event
has a geometric distribution and this explains Theorem 7.1-3, p 274.

(Note time = number of frames x frame width)

Suppose we are actually observing a continuous time process, like a
telephone exchange.  An event is a call.

Calls arrive at rate λ per minute.  Suppose frame is 1 minute. Then the p in

the Bernoulli counting process is also λ. But note that λ must be less than 1

in this model – the frame-based approximation to the continuous time
process will not be useful if events occur more than once per frame, on
average.  If λ were 5 per minute, we would need a smaller frame, say 1

second, and then the p would be 1/12 so that in 60 seconds we would still
get 5 events per minute, on average.

Is this a Markov chain? Yes, because it has the Markov property.
Informally: Future indept of past given present.
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Bernoulli Counting Process with p=0.1



What is transition  matrix?  See p 269

Row associated with state k, k=0,1,2,… representing count

0,0,0…,1-p, p, 0,0,0 where the 1-p is in the kth position, k=0,1,2,…

P[X(n)=k|X(n-1)=k] =1-p  for n=2,3,4,… and k=0,1,2,….   And

P[X(n)=k+1|X(n-1)=k] =p  for n=2,3,4… and k=0,1,2,….

P[X(n)=k+2|X(n-1)=k] = ?   for n=2,3,4… and k=0,1,2,….

Suppose we are actually observing a continuous time process, like a
telephone exchange.  An event is a call.
Calls arrive at rate λ per minute.  Suppose frame is 1 minute. The the p in

the Bernoulli counting process is also λ. But note that λ must be less than 1

in this model – the frame-based approximation to the continuous time
process will not be useful if events occur more than once per frame, on
average.  If λ were 5 per minute, we would need a smaller frame, say 1

second, and then the p would be 1/12 so that in 60 seconds we would still
get 5 events per minute, on average.

Poisson Process:  Extend Bernoulli Counting process by considering
continuous time (in which frame size is 0 (or dt))  Call count N(t).

 (Vertical lines should be omitted since change instantaneous).
Note that rate of 1 per second is a constant average rate, but that at any
time t, the number of events that occurs is N(t) and N(t)/t is not constant.
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P(N(t)=x) = see Poisson with mean λt on p 277.

λ   is the average rate of events per unit time.

Note conditions for Poisson to apply:

i) independent increments
ii) stationary increments

iii) one event at a time

iv) prob of event in dt is λ dt

can be made rigorous and then i)-iv) IMPLY Poisson.

These conditions can be used for a mental check of Poisson context.

Example 1:  telephone calls at SFU switchboard 291-3111

Example 2:  students arriving at B lot from 9-10 am Wed.
Example 3: number of customers arriving at Safeway 9-10 am Wed.

Time between events:  “interarrival times”

Note from Poisson pmf,

P(N(t)=0) = e−λt .     Let T be the time until the first event.

Since {N(t)=0} is the same event as {T>t}

P(T>t) = e−λt  and P(T≤ t) = 1-e−λt

This proves T is exponential.  In fact can show (p 278) that all the
interarrival times have this same exponential distribution.

T1 T2 T3 T4

In fact, {Ti:  i= 1,2,3,… } are IID exponential (λ)  (mean is λ−1)

Poisson Process with rate parameter λ (i.e. mean λt) has

Interarrival time that are exponential with rate parameter λ (i.e. mean λ−1)



What about waiting times for the Poisson Process? Gamma. (p 281)

Note that {Wn>t}  is the same event as {N(t) ≤  n-1}
CDF of Wn  can be defined in terms of sum of Poisson probs (p 281).
Differentiate CDF of Wn to get Gamma density.
Note:  This representation of CDF of Gamma is a finite series.

How can T1 have the same distribution as T2 ?

Memoryless property of exponential. (p 239)

P(T1>t+s|T1>s) = P(T1>t)

Problems to try 7.2-4, 7.1-4


