Review session:

Important Ideas and Techniques:
Ch 1: Basics
Counting techniques section 1.4 nCr and nPr formulas.
Law of Total Probability. Use of conditioning to simplify calculations. p 31.
Independence - product rule. p 35
Ch 2: Discrete Probability Models
Pmfs
Joint Distributions. Conditional, Joint and Marginal probabilities. P 53
Expected Value. Population mean. Exp Value of function of a rv. Sec 2.3
Variance and SD. P 65 of $a+b X$ p 68
Simulation Sec 2.5
Var of aX+bY. Var of a mean. P 86
Exp Value of a conditioned RV. (a conditional prob dist is a dist). P 95
Ch 3: Discrete Models:
Discrete Uniform: $\mathrm{P}(\mathrm{X}=\mathrm{x})=1 / \mathrm{n}$ where $\mathrm{x}=1,2, \ldots, \mathrm{n}$
Bernoulli - 0-1 P(X=1)=p
Binomial $\mathrm{P}(\mathrm{X}=\mathrm{x})=\mathrm{nCx} \mathrm{p}^{\mathrm{x}}(1-\mathrm{p})^{\mathrm{n}-\mathrm{x}} \mathrm{x}=0,1, \ldots, \mathrm{n}$
Geometric $P(X=x)=(1-p)^{x-1} p \quad x=1,2,3, \ldots$
Negative Binomial $P(X=x)=(x-1) C(r-1) p^{r}(1-p)^{x-r} x=r, r+1, r+2, \ldots$
Hypergeometric $\mathrm{P}(\mathrm{X}=\mathrm{x})=\mathrm{rCx}(\mathrm{N}-\mathrm{r}) \mathrm{C}(\mathrm{n}-\mathrm{x}) / \mathrm{NCn} \mathrm{x}=0,1,2, \ldots, \mathrm{n}$ unless
restricted by $\mathrm{n}-(\mathrm{N}-\mathrm{r})$ below or r above
Multinomial $\mathrm{P}\left(\mathrm{Y}_{1}=\mathrm{y}_{1}, \mathrm{Y}_{2}=\mathrm{y}_{2}, \ldots, \mathrm{Y}_{\mathrm{k}}=\mathrm{y}_{\mathrm{k}}\right)=\left[\mathrm{n}!/\left(\mathrm{y}_{1}!\mathrm{y}_{2}!\ldots \mathrm{y}_{\mathrm{k}}!\right)\right] p_{1}^{y_{1}} p_{2}^{y_{2}} \ldots p_{k}^{y_{k}}$
Where the y_{i} are nonnegative integers and sum to n and p_{i} sum to 1 .
Poisson $\mathrm{P}(\mathrm{X}=\mathrm{x})=\mathrm{e}^{-\mathrm{m}} \mathrm{m}^{\mathrm{x}} / \mathrm{x}$! for $\mathrm{x}=0,1,2, \ldots$
Mean and SD for all these models.
Context for all these models.
Relationships between these models.
Moment Generating Functions: $\mathrm{M}_{\mathrm{X}}(\mathrm{t})=\mathrm{E}\left(\mathrm{e}^{\mathrm{tx}}\right)$
$\mathrm{M}_{\mathrm{X}+\mathrm{Y}}(\mathrm{t})=\mathrm{M}_{\mathrm{X}}(\mathrm{t}) \mathrm{M}_{\mathrm{Y}}(\mathrm{t})$
The moment generating function $\mathrm{M}_{\mathrm{x}}(\mathrm{t})$ identifies the rv X .
Ch 5 Continuous Random Variables
pdfs and cdfs - why not pmfs? Meaning of "density"
Probabilities from pdfs (integration)
Expected Value (population mean - integration formula) p 201
Probabilities and densities for a transformed RV p 206
Simulation using the fact that $F(X)$ is $U(0,1)$.
Joint, Marginal, and Conditional Densities. P 224.

Ch 6: Special Continuous RVs
Continuous Uniform: $\mathrm{U}(\mathrm{a}, \mathrm{b})$ mean $(\mathrm{a}+\mathrm{b}) / 2 \mathrm{SD}=\frac{|b-a|}{2 \sqrt{3}}$
Exponential $\lambda e^{-\lambda x} \mathrm{x}>0$ mean $=\lambda^{-1}=\mathrm{SD}$ models durations with constant hazard rate
Lack-of-memory property p 239
Normal models totals and averages. p 241
Normal Approximation of any dist using mean and SD.
Normal dist of $\mathrm{aX}+\mathrm{bY}+\mathrm{c}$ when X, Y normal.
Gamma $f(x)=\frac{x^{\alpha-1} e^{-x / \beta}}{\beta^{\alpha} \Gamma(\alpha)} x>0$ models sum of α exponentials
Mean is $\alpha \lambda^{-1}=\alpha \beta$ SD is $\alpha^{1 / 2} \beta$
Weibull models durations with non-constant hazard. Details p 255-256
Stochastic Processes $\mathrm{X}(\mathrm{t}) \mathrm{t}$ discrete or continuous:
Ch 4: Markov Chains
"Simple" Queuing System (discrete time) uses Bernoullis and frames.
Is an example of a Markov Chain. (Why?)
Markov Property: Future given past and present only depends on present.
Markov Chain: X(0), State space $\{0,1,2,3, \ldots\}$ one-step transition matrix, P.
P has elements $p_{i j}=P(i->j)$ rows of P indexed by i, cols by j
Know how to read $\mathrm{P}(\mathrm{i}->\mathrm{j})$ from row i and column j .
k -step transition matrix is P^{k}
long run (i.e steady state) probabilities from P^{k} for large k . or from Theorem 4.6-3 p 171
Simulation of a Markov Chain (How? P 161) (Why? P 162)
Return times, mean p 173.
First Passage Times and Absorbing States: sec 4.7

Ch 7: Markov Counting and Queuing Processes

7.1 Discrete time Markov Counting and Queuing Porcesses

Both kinds of process use Bernoulli RVs in a sequence of frames.
Sequence of independent Bernoulli trials.
Bernoulli Counting process: Geometric inter-event times, $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots$
Count of events in frame $t(t$ an integer here) is $N(t)$ not quite Poisson.
Can model as a Markov Process. Need to relate rate of event occurrence to probability of an event in a frame.
7.2 Poisson Process (continuous time counting process).

Exponential inter-event times, $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots$, and $\mathrm{N}(\mathrm{t})$ is Poisson.
Rate of events per unit time is λ. Time interval for count is $t_{2}-t_{1}$ or,
simply t if the time interval is $(0, t)$. The mean of the Poisson RV
$N(t)$ is $m=\lambda t$
7.3 Exponential interarrival times imply Poisson counts and vice-versa.
7.4 Bernoulli Queuing Process with single server.

Arrivals cause queue length $\mathrm{N}(\mathrm{t})$ to increase by 1 , and service completion causes a drop by 1 . Arrival times and service times imply the $\mathrm{N}(\mathrm{t})$ path and vice versa. Arrival rates and service rates must be converted to bernoulli probabilities (per frame) to apply this model.

The Bernoulli counting process is a Markov Chain.

