Today: Sections (Apparently unrelated topics)
9.1 Distribution of Extremes
10.1 The Reliability Function
10.2 The Hazard Rate
9.1 Distribution of Extremes

Consider a random sample of n observations:
$\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$
We model this observation as the realization of an IID sequence of random variables
$\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots, \mathrm{X}_{\mathrm{n}}$

The sampled population may be described by its associated $\operatorname{CDF~F}_{\mathrm{x}}(\mathrm{x})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})$

e.g. $X \sim N(0,1)$

Look at the distrib'n of the mi nimums

We can do this for 500 samples of size 10 :

or as a histogram:

How can this distribution of the MINIMUM be computed analytically?

Let $X_{\text {MIN }}=$ minimum of $\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right\}$ $\mathrm{P}\left(\mathrm{X}_{\mathrm{MIN}}>\mathrm{x}\right)=\mathrm{P}\left(\right.$ all $\left.\mathrm{X}_{\mathrm{i}}>\mathrm{x}\right)=\left(1-\mathrm{F}_{\mathrm{X}}(\mathrm{x})\right)^{\mathrm{n}}$ because of independence

So, $\mathrm{F}_{\text {MIN }}(\mathrm{x})=\mathrm{P}\left(\mathrm{X}_{\text {MIN }} \leq \mathrm{x}\right)=1-\left(1-\mathrm{F}_{\mathrm{X}}(\mathrm{x})\right)^{\mathrm{n}}$ and $\mathrm{f}_{\text {MIN }}(\mathrm{x})=\mathrm{n}\left(1-\mathrm{F}_{\mathrm{X}}(\mathrm{x})\right)^{\mathrm{n}-1} \mathrm{f}_{\mathrm{X}}(\mathrm{x})$

Example: Suppose X is $\operatorname{Normal}(0,1)$. Can't write down $F_{X}(x)$ but can compute it (with MINITAB), and similarly $n\left(1-F_{X}(x)\right)^{n-1} f_{X}(x)$ So for $n=10$, and $F_{X}()$ cdf of $N(0,1)$, the density of $X_{\text {MIN }}$ is:

This is an example where we did not need to simulate the result since it was tractable.

There is a similar result for $\mathrm{X}_{\text {MAX }}$.
Important special case: X exponential rate λ.
What is $n\left(1-F_{X}(x)\right)^{n-1} f_{X}(x)$ when
$\mathrm{f}_{\mathrm{x}}(\mathrm{x})=(\lambda) \mathrm{e}^{-\lambda \mathrm{x}}$ and $\mathrm{F}_{\mathrm{x}}(\mathrm{x})=1-\mathrm{e}^{-\lambda \mathrm{x}}$

$$
\begin{aligned}
n\left(1-F_{X}(x)\right)^{n-1} f_{X}(x) & =n\left(e^{-\lambda x}\right)^{n-1}(\lambda) e^{-\lambda x} \\
& =(n \lambda) e^{-(n \lambda) x}
\end{aligned}
$$

So conclude $\mathrm{X}_{\text {Miv }}$ is Exponential with rate $\mathrm{n} \lambda$

Application to Poisson processes.
Suppose Poisson Process 1 has expo interarrivals with rate λ_{1} and
Poisson Process 2 has expo interarrivals with rate λ_{2}
Then the combined processes have interarrivals that are expo rate ($\lambda_{1}+\lambda_{2}$), and combined process is Poisson.

For example: Cars pass with rate $10 /$ minute, Trucks pass with rate 2 /minute, so number of vehicles (cars or trucks) that pass is Poisson with rate 12 /minute. In 5 minutes, use Poisson with mean 60 .

10.1 The Reliability Function

Let T denote time to failure

$$
\begin{aligned}
\mathrm{R}(\mathrm{t}) & =\mathrm{P}(\mathrm{~T}>\mathrm{t}) \text { is the reliability function of } \mathrm{T} \\
& =1-\mathrm{F}_{\mathrm{T}}(\mathrm{t})
\end{aligned}
$$

Redundant components can increase reliability.
See series and parallel redundancy p 375.
Reliability of series connection is product of reliabilities Reliability of parallel connection - see Thm p 375

Example:
Two components in series both have reliability $R(t)=e^{-t}$

What is reliability of circuit? $\mathrm{e}^{-2 t}$ which is smaller.
Series circuit will tend to fail sooner than single component.

Two components in parallel: each with $\mathrm{R}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}}$
What is reliability of two-component circuit?
$1-\left(1-e^{-t}\right)^{2}=2 e^{-t}-e^{-2 t}=e^{-t}\left(2-e^{-t}\right)>e^{-t}$ when $t>0$

Parallel redundancy is effective in improving reliability.
For example: lifetime is exponential with mean 1 $\mathrm{R}(3)=\mathrm{P}($ lifetime of circuit $>3)=$
0.14 for single component
0.018 for two components in series
0.25 for two components in parallel

More complex circuit (Ex 10.1-4)
12

The $1,2,3,4$ are rate constants for the component's lives. Reliability of 1,2 is $\mathrm{e}^{-(1+2) \mathrm{t}}$ and of 3,4 is $\mathrm{e}^{-(3+4) \mathrm{t}}$ So, reliability of circuit is $1-\left(1-\mathrm{e}^{-(1+2) t}\right)\left(1-\mathrm{e}^{-(3+4) t}\right)$

And for any t you can work out the $P($ circuit lives to age t).
10.2 Hazard Rate

Exponential duration is one ended by constant "force of mortality", ie. Each Δt has approx prob $\lambda \Delta t$ of being death interval (which is why the Bernoulli frames approach worked).

This "force of mortality" idea is defined by the hazard function: $h(t)=\mathrm{f}_{\mathrm{T}}(\mathrm{t}) /\left(1-\mathrm{F}_{\mathrm{T}}(\mathrm{t})\right)$

Can show this is limit as $\Delta t->0$ of
$\mathrm{P}(\mathrm{t}<\mathrm{T}<\mathrm{t}+\Delta \mathrm{t} \mid \mathrm{T}>\mathrm{t})$ which is the probability that the item dies in $(t, t+\Delta t)$ given that it has survived to age t. (See p 381)

Hazard rate for an exponential lifetime $=$ $\lambda \mathrm{e}^{-\lambda t} /\left(1-\left(1-\mathrm{e}^{-\lambda t}\right)\right)=\lambda$ and does not depend on t !

Hazard rate and pdf can be computed from each other (See Thm 10.2-1).

Example of increasing hazard rate. Example 10.2-4.

cf Exponential PDF.

THE END of New Material!

Next Week - Review of Whole Course.

