Review of Chapters $5 \& 6$ today and modeling exercises.

Ch 5: Continuous Random Variables

Probability law of a continuous RV X is specified by either the pdf, $\mathrm{f}_{\mathrm{X}}(\mathrm{x})$, or the cdf, $\mathrm{F}_{\mathrm{X}}(\mathrm{x})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})$.
The derivative of $F_{X}(x)$ is $f_{X}(x)$.
The $f_{X}(x)$ values are best interpreted as relative frequencies, that is by comparing $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ by using $f\left(x_{1}\right) / f\left(x_{2}\right)$ since the probability for any particular x is 0 . For example, if $f(x)=c x^{2}$ on $(0,3)$ and 0 otherwise, where c a constant, than $f(2) / f(1)=4$ meaning that 2 is 4 times more likely than 1 . Note what is c ? integrating gives $\mathrm{c} .=1 / 9$ so $\mathrm{c}=9$

Consider Normal PDF for mean 0 SD $=1$ $\mathrm{f}_{\mathrm{X}}(\mathrm{x})=(1 / \sqrt{2 \pi}) \exp \left(-\mathrm{x}^{2} / 2\right)$
How likely are values like 0 compared to values like 1 ? Look at ratio $\mathrm{f}_{\mathrm{x}}(0) / \mathrm{f}_{\mathrm{x}}(1)=1 / \exp (-1 / 2)=1.65$
A histogram of normal sample values would be about 65% higher at 0 than at 1 .

Where is the point of inflection of $f_{X}(x)$ for $N(0,1)$?
Second derivitive of $f_{X}(x)$ is 0 at -1 and +1 . Helps draw.
Expected value: $\mathrm{E}(\mathrm{X})$
Just the average of X over its population frequencies.
$\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\ldots+\mathrm{x}_{\mathrm{n}}\right) / n$
If population is $0,0,1,1,1,2,2$
Then $E(X)=(0+0+1+1+1+2+2) / 7=1$
Alternative method
Since there are $20 \mathrm{~s}, 31 \mathrm{~s}$, and 22 s we could have computed the average as $(2 \times 0+3 \times 1+2 \times 2) / 7$
$=0 \mathrm{x}(2 / 7)+1 \mathrm{x}(3 / 7)+2 \mathrm{x}(2 / 7)$
$=\sum_{x} x P(X=x)$
which is the formula for $\mathrm{E}(\mathrm{X})$ for discrete data.
For continuous data
$\mathrm{E}(\mathrm{X})=\int_{x} x f_{x}(x) \mathrm{dx}$
For example $\mathrm{f}(\mathrm{x})=8 / \mathrm{x}^{3}$ for $\mathrm{x} \geq 2, \mathrm{E}(\mathrm{x})=\int_{2}^{\infty} x\left(8 / x^{3}\right) d x=4$
What about $\mathrm{E}\left(\mathrm{X}^{2}\right)$?
Three methods:
i) find $f_{X}{ }^{2}(x)$ via $P\left(X^{2} \leq t\right)$ and differentiate wrt t, then use definition of $E()$.
ii) Use Jacobian approach (p 207) to get $f_{x}{ }^{2}(x)$ and then use definition of E()
iii) Use $\mathrm{E}\left(\mathrm{X}^{2}\right)=\int_{2}^{\infty} x^{2} f_{x}(x) d x$

However in this particular example, $\mathrm{E}\left(\mathrm{X}^{2}\right)$ is infinite! Method iii) is usually best.

Note: $\operatorname{Var} \mathrm{X}=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}^{2}(\mathrm{X})$ when these terms exist.
A note on Joint Distributions and Independence: Consider the discrete distributions of X and Y as follows: Suppose

X	Y	Probability
1	1	.1
1	2	.2
1	3	.1
1	4	.2
2	1	.1
2	2	.1
2	3	.1
2	4	.1

Are X and Y independent?
Is the distribution of $\mathrm{Y} \mid \mathrm{X}=1$ the same as the distribution of Y?
Dist of Y ?

1 . 2
2 . 3
3.2

If X and Y were indept, need $\mathrm{Y} \mid \mathrm{X}=1$ to be the same distribution as $\mathrm{Y} \mid \mathrm{X}=2$. Not true here.

Same idea applies to joint continuous distributions.
Note $f_{Y \mid X}(y \mid x)$ is by definition $=f_{X, Y}(x, y) / f_{X}(x)$ and the definition of independence is $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$
so if X and Y are independent $f_{Y \mid X}(y \mid x)=f_{Y}(y)$
Ch 6: Special continuous RVs
Normal - sums and averages
Gamma - sums of exponentials
Weibull - lifetimes with non-constant hazard
Beta - distributions over a fixed interval (like $(0,1)$)
Uniform - uniform on (a,b) e.g. $\mathrm{U}(0,1)$
Gamma is approx normal for large shape parameter α (large number of iid exponentials are added together).
Gamma with shape parameter $\alpha=1$ is exponential
Weibull with shape parameter $\beta=1$ is exponential
Beta with $\mathrm{a}=1 \mathrm{~b}=1$ is $\mathrm{U}(0,1)$

Exercises in Modeling:

1. $\mathrm{X}=$ number of books checked out of library in one hour.
2. $\mathrm{X}=$ number of books checked out of library in first hour
3. $\mathrm{X}(\mathrm{t})=$ status of each vehicle in a fleet of taxis: working, under repair, dead.
4. $\mathrm{X}, \mathrm{Y}=$ score in soccer (or hockey or ...) game
5. $\mathrm{X}(\mathrm{t})=$ annual colour most in fashion
6. $\mathrm{X}(\mathrm{t})=$ stock price
7. $X(t)=$ number of computers in assignment lab that are working.
8. $\mathrm{X}=$ proportion of sand in sample of construction cement
9. $\mathrm{X}=$ your project ????

Friday: Farouk Office Hour 12-1 AQ 10543

Monday: last lecture. More review.

