Review for Midterm:

Ch 1 - Intro
Shortcomings of Ordinary Histograms and Scatter Plots for Data Analysis
Ubi Exercise - Coping with flawed data collection
Use of dummy variables
Linear spaces as approximations
Exploration vs Confirmation
Dealing with Outliers and Skewed Distributions
Graphical summary
Preprocessing of data with index formation
Ch 2 - Univariate Data
Multi-panel graphs
Quantiles and Quantile Plots, interpolation
Q-Q plots and Normal Q-Q Plots
m-d plot
box plot
Fits and Residuals - Understanding the process
Monotone Spread
Additive and Multiplicative shifts
Power Transformations and Log Transformation
r-f plot, s-l plot
Mercedes Exercise - Forecasting a time series
nonparametric smoothing for trend fitting
seasonal patterns, non-seasonal patterns
residual analysis in time series context
Ch 3 - Bivariate Data
Banking to 45° - aspect ratio
Loess Details - choice of alpha, weight function, grid
Weighted Least Squares
Bisquare - robust fitting - role of weighting
Histo exercise: Density estimation - kernel estimation weight function role, grid
Jittering
Slicing, choosing overlapping slicing intervals
Role of variables - prediction vs fitting the data
Time Series examples
Iterative residual analysis
Cut-and-stack plots
Cycle Plots
Brushing and Labeling

Ch 4 - Trivariate Data
Matrix Plots
Coplots of Z on X_{1} and X_{2}
Interaction of X_{1} and X_{2} on Z - two coplots
Brushing again
Coplots of Fitted Surfaces
Cropping - why?
Bimbo Exercise - simulation for analyzing data
Censored Data
Density Families
ECDF comparison and Q-Q plots
Simulation to replace missing data
Graphical Output for fitting and optimization
Tentative parameter values to illustrate method
Level Plots
Improvisation (using context to adapt methods)
Contour Plots - method of producing from grid

- use of colour
- choice of number of contours
- effect of smoothing

Level Plots of (Fitted, usually) Surfaces
Wireframe Plots

- varying perspective

