
STAT 400 Data Analysis    November 10, 2003

Today:  More about the bootstrap

The bootstrap demos from last day were a bit rushed, and I have more to say about them,
and more examples to display.

1.  Does the Bootstrap produce correct results for the SD of the sample mean?

We computed the SD of the sample mean, based only on one particular random sample of
sinze n=20.  We showed that this method gave a value similar to the theoretical value and
the usual estimator of it.  (s/÷n and s/÷n).  These latter formulas did not need to be
known to do this.

For example, for a particular sample of N(0,1) data, we found:

Standard deviation of sample, s = 1.14

 s/÷20 =       0.26

bootSD of sample mean   =    0.24

Since in this case we know Population SD = 1,
Population SD of mean = 1/÷20 = 0.22

So the bootstrap has performed well here.

2.  Does the Bootstrap produce correct results of the SD of the 90th percentile?

We compute the SD of the sample 90th percentile, based only on one random sample.

The theoretical formula is not widely known and so this was an example of how the
bootstrap could estimate this SD in such a situation.  Today we will check this bootstrap
approach by simulating the correct SD since we will start with a known distribution.

For example:

Here is a sample n=20 from N(0,1):

            .             :    :::      .:     . . .:   :      .
          -+---------+---------+---------+---------+---------+-----C1       
       -2.40     -1.60     -0.80      0.00      0.80      1.60



The 90th percentile could be estimated by the 18th order statistic, in this case 1.22.  But
how precise is this estimate?  Bootstrap it!

BootSD   =    0.27  so we might say our estimate of the 90th percentile is
1.22±.27  (mean ± SD)

But is this right?  Lets simulate some samples from N(0,1), estimate the 90th percentile
from each sample (18th order statistic) and compute the SD when we have enough of
them.

simSD90    0.35

So our estimate of .27 was a bit low.  But of course, the .27 was based on a sample of
n=20, and the .35 is a population-based SD, so we don’t expect perfection.   The question
is, is this bootstrap method seriously biased in this case?

We can investigate this with simulation.  I did the whole experiment (generate 20 N(0,1),
bootstrap the 90th percentile estimate and compute its SD) 15 more times.  Here are the 15
values of the bootstrap estimates of SD of the 90th percentile:
.36, .35, .34, .27. .24, .14, .40, .36, .49, .46, .16, .40, .36, .38, .34

and the average of these is .34 – pretty close to .35.  If the method is biased, the bias
would be modest in this case. But there is no reason to expect unbiasedness – it would
depend on the situation.

Does the good performance of the bootstrap depend on the N(0,1) sample we used?

These demos used “data” that was generated from a N(0,1) distribution, but this
information was not used.  Someone asked if the performance would be as good for some
less symmetrical distribution, so I will show how it works with Gamma (3,1)

Here is a Gamma (3,1), n=20, which is strongly right skewed:

             :  : .   ..:. . .   ...    .  .         .     ..
          -------+---------+---------+---------+---------+---------C1       
               1.2       2.4       3.6       4.8       6.0       7.2

In this case the bootstrap SD of the 90th percentile estimate is

bootSD   1.07

The true SD (using the n=known population Gamma(3,1) of the 90th percentile is



simSD90    0.82

Our one sample produced a pretty good estimate of the SD of the 90th percentile.  To see
if it is usually this good, you can do the simulation using the “boot2” program 15 times,
starting with a new Gamma sample each time in column 1.

(The program to produce the theoretical SD (0.82 above) is

Gmacro
bootcheck.mac
rand 20 c1-c500;
gamm 3 1.
Do k1=1:500
sort ck1 c501
let k2=c501(18)
let c502(k1)=k2
enddo
stdev c502 k3
name k3 'simSD90'
print k3
endmacro

Is the variability of the bootstrap estimate of SD of a statistic too variable to be useful?

We have shown that the bootstrap does provide variability estimates which are almost
unbiased, but they do vary quite a bit in samples of size 20.  However, any estimate of
variability will vary quite a bit if based on such a small sample.  For example, the sample
SD as an estimator of the population SD has quite high variability, even in the case of
N(0,1) data.

Here is the result of an experiment on this:

                             .
                             :
                             :.. .        .
                       ..  : ::: :.  : .  :: :   :
            .    :: :.:::..:.:::::::::.: :::::.:.:..::  ... .  .
         +---------+---------+---------+---------+---------+-------Sample SD    
      0.60      0.75      0.90      1.05      1.20      1.35

mean of sample SD = 1.00   SD of sample SD = 0.16  range in n=100 trials is (0.63, 1.41)
So the estimate of the SD which we know is 1 is only within ± .16
In our 15 repetitions of the bootstrap estimate of the 90th percentile, the



SD of the SD of the estimate was only 0.10.   This is less than the 0.16 which is the
variability of the sample SD that we habitually use as our estimate of the population SD.

Of course, larger samples provide much better estimates.   The small sample used in these
experiments (n=20) was used to demonstrate the surprising efficiency of the bootstrap –
in a case where it might be expected to fail, it worked pretty well.

Can the bootstrap be used in more complex situations?

I mentioned last time that the bootstrap can be used in very complicated situations for
which nobody knows the theory needed to compute the SD of the estimator, other than by
the bootstrap.  I will describe a case like this as well.

Stepwise regression is a popular technique with statisticians that do not like to make full
use of the context of a data set (this reflects my bias against this method!).  It is well-
known that variables that are highly correlated (positively of negatively) will pre-empt
each other in a stepwise regression.  So the subset of variables you end up with will
depend to some extent on chance – the particular errors observed in the sample.  The
subset of variables produced by a stepwise regression is often suggested as indicating the
variables that are most predictive of the dependent variable, even though a different set
might have been almost as good.  How can one judge, in a particular instance, the
seriousness of this problem?  Bootstrap the whole stepwise procedure, and observe the
variability of the outcome.

The demo of this is done with a data set on body measurements of 252 men.  The aim is
to find a model which estimates the body density (measured by immersing the men in
water.)

There are 13 body measurements (hgt, wgt age, etc …) and one density variable.  First
we use a random subset of 25 of these men, and then do  a stepwise regression.  We find
using stepwise regression that only one body measurement “abdomen” is significant.  But
can we judge how much this conclusion depends on the particular sample used, without
referring to the population of 252 men?  The bootstrap shows that different results might
easily have been observed.  This is the case even with using all 252 men in the sample.

The bootstrap has confirmed what is widely known to be true – stepwise regression does
not produce good explanatory models with any consistency.

Continued next page ….



About the “men” data:

Here are the first few lines (I’ll send the unwrapped total data set by e-mail):
Density-Water Eqn Age Wgt Hgt Neck Chest Abdomen Hip Thigh Knee Ankle

Biceps Forearm Wrist
1.0708 12.3 23 154.25 67.75 36.2 93.1 85.2 94.5 59 37.3 21.9

32 27.4 17.1
1.0853 6.1 22 173.25 72.25 38.5 93.6 83 98.7 58.7 37.3 23.4

30.5 28.9 18.2
1.0414 25.3 22 154 66.25 34 95.8 87.9 99.2 59.6 38.9 24

28.8 25.2 16.6
1.0751 10.4 26 184.75 72.25 37.4 101.8 86.4 101.2 60.1 37.3 22.8

32.4 29.4 18.2
1.034 28.7 24 184.25 71.25 34.4 97.3 100 101.9 63.2 42.2 24

32.2 27.7 17.7
1.0502 20.9 24 210.25 74.75 39 104.5 94.4 107.8 66 42 25.6

35.7 30.6 18.8
1.0549 19.2 26 181 69.75 36.4 105.1 90.7 100.3 58.4 38.3 22.9

31.9 27.8 17.7
1.0704 12.4 25 176 72.5 37.8 99.6 88.5 97.1 60 39.4 23.2

30.5 29 18.8
1.09 4.1 25 191 74 38.1 100.9 82.5 99.9 62.9 38.3 23.8

35.9 31.1 18.2

Ignore the “Eqn” variable (the second column):

There are a couple of gross errors – you can ignore them for now.

Length measurements are in cms. Except HGT which is inches.

The MINITAB command to select a random 25 rows (without replacement):

Sample 25 c1 c3-c15 c101 c103-c115

The Minitab Commands to bootstrap the stepwise regression:

Sample 25 c101 c103-c115 c201 c203-c215;
Repl.
Step c201 c203-c215

I think I want you to try this, so I’ll make it an exercise, but not due until Wed Nov
26. More details on Wednesday this week.


