Today: Some Ch 3 exercises

Analysis of a Multivariate Normal Data Set -Ch 4
Ex 3.14 This uses a small data set $X=\left(\begin{array}{ll}9 & 1\end{array}\right) 3$ cases x 2 variables

And,

$$
\begin{align*}
& X_{1}=\left(\begin{array}{lll}
9 & 5 & 1
\end{array}\right)^{\prime} \tag{array}\\
& X_{2}=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)^{\prime}
\end{align*}
$$

The linear combinations $c^{\prime} \mathrm{X}^{\prime}=-\mathrm{X}_{1}+2 \mathrm{X}_{2}$ and
$b^{\prime} X^{\prime}=2 X_{1}+3 X_{2}$ are defined in the exercise.
In a) we are to compute the means, variances and covariances of these new rvs.
The observed values of $c^{\prime} X^{\prime}$ and $b^{\prime} X^{\prime}$ are (-713) and (21 198) resp. and clearly the means are -1 and 16 respectively. Sample Variance of c' X^{\prime} is $[(36+4+16) / 2]=28$
Sample Variance of b' X^{\prime} is $[(25+9+64) / 2]=49$ and $\operatorname{Cov}\left(b^{\prime} \mathrm{X}^{\prime}, c^{\prime} \mathrm{X}^{\prime}\right)=[(-30+6-32) / 2]=$ -28.

This is obvious using the given linear combinations - but for a matrix way to do it ...
$(-12)(951)=\left(\begin{array}{lll}-7 & 1 & 3\end{array}\right)$ and (13 2)
$(23)(951)=\left(\begin{array}{lll}21 & 19 & 8\end{array}\right)$

To get the sample mean for c' X^{\prime} use $(1 / n) c^{\prime} X^{\prime}(1)=(1 / 3)(-713)(1)=-1$
(1)
(1)
(1)

Similarly the mean of $b^{\prime} X^{\prime}=16$
Now write $\quad Y=\left(c^{\prime} X^{\prime}\right)=\left(\begin{array}{lll}-7 & 1 & 3\end{array}\right) \quad$ We need Sample $\operatorname{Cov}(Y)$ (b'X') (21 19 8)
which is part b) Do the means and cov from the means and cov of X (and then using b ' and c')
b)

See (3-36) p 142. $\operatorname{Cov}(\mathrm{Y})=\mathrm{c}$ 'Sb
See (3-27) p 140. S = (1/n-1) $X^{\prime}\left(I-(1 / n) 11^{\prime}\right) X=(1 / 2)(951)\left(I-(1 / 3)(1)\left(\begin{array}{lll}1 & 1 & 1))(91)\end{array}\right.\right.$
(1)
$=(16-2)$ which is S
$\left(\begin{array}{ll}-2 & 1\end{array}\right)$
Substituting in (3-36) Cov $\left(c^{\prime} X^{\prime}, b^{\prime} X^{\prime}\right)=(-12)(16-2)(2)=(-204)(2)=-40+12=-28$

$$
\left(\begin{array}{ll}
-2 & 1
\end{array}\right)(3)
$$

(3)

We could similarly show $\operatorname{Var}\left(c^{\prime} X^{\prime}\right)=c^{\prime} S c=28$ and $\operatorname{Var}\left(b^{\prime} X^{\prime}\right)=b^{\prime} \mathrm{Sb}=$
3. 15 is just a repeat of 3.14 with $n=p=3$. means 12 and -1 , vars 12 and 43 , cov -3
$3.16 \square_{\mathrm{v}}$ is the covariance of vector V , by def $=\mathrm{E}\left(\mathrm{V}-\square_{\mathrm{v}}\right)\left(\mathrm{V}-\square_{\mathrm{v}}\right)^{\prime}$
(Note V is a column vector of length p .)

$$
=E\left(V^{\prime}\right)-\square_{\mathrm{V}} \square_{\mathrm{V}}^{\prime} \text { (by usual expansion) }
$$

so $E\left(V^{\prime}\right)=\square_{v}+\square_{v} \square_{v}{ }^{\prime}$

Next topic - Multivariate Normal - Ch 4
Data $\mathrm{p} 187 \mathrm{p}=4$ variables on a sample of lumber.
First: A look at Outliers
How do compute the d^{2} ?
Order of computations
S pxp
$\mathrm{S}^{-1} \mathrm{pxp}$
$(1 / \mathrm{n}) \mathrm{X}^{\prime} 1_{\mathrm{n}}$ which is $\bar{X} 1 \mathrm{xp}$
Subt \bar{X} from X nxp
Transpose ($\mathrm{X}-\bar{X}$) pxn
Mult (X- $\bar{X})^{\prime} \mathrm{S}^{-1}(\mathrm{X}-\bar{X}) \mathrm{nx} \mathrm{n}$
Take diagonal. $1 \times \mathrm{n}$
Outliers: univariate, multivariate.
Multivariate outliers are not necessarily univariate outliers. See row 16 of Vib*Static1. Univariate Outliers are not necessarily multivariate outliers. See row 9 of Vib*Static1.

More about p-Normal:
Density p 150 - number of parameters

Contours - connection with statistical distance

- connection with eigenanalysis Result 4.1 p 153 and bottom of page

Bivariate Case p 151
Distribution of Lin Combination of univariate (possibly correlated) normals p 157
Chi-Square Distribution of Quadratic Forms based on \square^{-1} p 163-4
Normal Q-Q Plots pp 178ff
Next time - rest of Ch 4 - and exercises.

