STAT 802

Here is a brief summary of today's lecture (now that I have resurrected my computer):

p 150 form of $N_p(\mu, \Sigma)$ density is c exp(-d²/2)

p 163 Method for computing conditional distributions for $N_p(\mu, \Sigma)$ See Example 4.7 for bivariate and **Exercise 4.7**

p 168 form of joint density of random sample from $N_p(\mu, \Sigma)$ is $c^n \exp(-\Sigma_{\iota} d_i^2/2)$. Try **Exercise 4.2**

p 171 mle's of μ , Σ are \overline{x} and S_n (not S). Also, mle of $f(\theta)$ is f(mle of θ)

p 174 Sampling distributions of \overline{x} and S_n

p 176 Central Limit Theorem for multivariate random vector. Exercise 4.21

p 194 Transformations to Normality: counts use square root, proportions use logit. **Exercise 4.27**

p 211 (in Ch 5) T^2 statistic can be evaluated using F distribution. Exercise 5.1

Next time – More from Ch 5 but not much about simultaneous Cis.