
STAT 802   Multivariate Analysis   September 19, 2005 
 
Today: 
1.  Review of matrix algebra we need for statistical distance, and easy calc method. 
2.  Multivariate Normal Distribution (Ch 4)  
 
Statistical Distance 
 
Heuristic Explanation – See Fig 1.20 p 31 and Fig 1.24 p 36. 
 
Some details (Ch 2) 
 
Vector Representation and Arithmetic. 
 
Lx = Length of a vector x = (x’x)1/2  (Note x’x is a scalar). 
Angle between  a vector  x = (x1,x2) and the x1 axis is cos-1(x1/Lx)  (By definition of cos) 
Inner Product of vectors x and y is denoted x’y and is scalar. 
If θ is the angle between vectors x and y, then cos(θ) = x’y/(LxLy) 
 Generalizes to k dimensions.  (not k variables!) 
 
See example 2.1, p 54: angle between x and y where 
x=c(1,3,2) 
y=c(-2,1,-1) 
costheta=t(x)%*%y/((t(x)%*%x)^.5*(t(y)%*%y)^.5) 
theta=acos(costheta) # in radians 
dtheta=(180/pi)*theta #in degrees 
 
Recall definition of Linear Dependence 
Vectors x1, x2, …., xp  are linearly dependent if you can express one as a linear function 
of the others.  (See (2.7) p 54 bottom) 
 
Projection of vector x on y – must be a multiple of the vector  y – but what multiple? 
Ans:  x’y/(y’y)^.5   (see equation 2-8) so the projection is (x’y/(y’y))y.  See Fig 2.5 p 55.  
If we want to write the projection of x on y as a multiple of a unit vector, we re-scale y to 
be unit by y/Ly  and multiply it by |x’y|/Ly 
Can infer that length of this projection is |x’y|/y’y = Lx cos(θ) 
 
Matrices (p 55 ff) 
Arithmetic: Sums, Products, Inverses and the Identity Matrix 
 
a= <- matrix(c(3,4,2,1), nrow = 2, ncol=2) 
b=ginv(mdat) 
>a%*%b 
gives the identity matrix.  
 
Symmetric Matrices are Important for Statistics (Why?) 



Orthogonal (Square) Matrices: A’
 = A-1  so A’A = I 

(Note:  Orthonormal might be better, with Orthogonal meaning A’A=Diagonal – but we 
will stick to the terminology of the book). 
 
 
Eigenvalues and Eigenvectors 
 
(Synonyms Latent and Characteristic have other meanings as well – confusing) 
 
Square Matrix A – x is Eigen vector  of A  if Ax=λx where  λ is a scalar. λ is called an  
eigenvalue of A corresponding to the eigenvector x.  There are usually many such x and 
λ,  but never more than the rank of A (≤ the dimension of A).  
 
Now concentrate on (square) symmetric matrices (like covariance matrices) – see 
theorem p 61.  Eigenvectors are mutually perpendicular unless some eigenvalues are 
multiple.  
By convention, usually specify eigenvectors to have unit length (wlog see definition).  
 
Positive Definite Matrices 
 
A symmetric matrix A is Positive Definite if x’Ax > 0 for all x≠0 
Can show this is equivalent to all eigenvalues >0 (p 64)  
 
Statistical Distance of vector  x from vector  0 (origin) has the form x’Ax where A is pos 
definite.  
From x to µ is (x-µ )’A(x-µ).  But we still have to make A specific to call it statistical 
distance.  
 
To find appropriate A:  See p 66 Fig 2.6  If the ellipse shown were a contour of the 
bivariate normal density, then we would find e1, e2, λ1  and λ2 from the eigenanalysis of 
the Σ−1 where Σ  is the covariance matrix.  So the distance of points from the origin would 
be x’Σ−1 x  (In the diagram, the variables are centered so the mean is the origin). This 
generalizes to p dimensions (See Theorem  bottom p 81) .  It implies that if you keep 
extracting maximal variance projections, each one perpendicular to the previous one, then 
the eigenvalues will be the maximal variances at each stage, and the eigenvectors will be 
the directions that the projections must be taken.  
 
The interpretation depends on the multivariate normality, but the procedure does not. The 
means and covariances of the data will produce statistical distances from the centroid for 
every “case”.   
 
Σ can be expressed as E[(x-µ)’(x-µ)] and is estimated by the equivalent sample formula 
(p 125). Because Σ is positive definite usually, there is a spectral representation based on 
the eigenanalysis (see p 67 , (2-21) The A in this formula can be replaced by Σ or its 
sample estimate. ).  This representation shows that the statistical distance is indeed found 
by an orthogonal rotation of the axes followed by the Euclidean distance in the 



standardized new coordinates. ((λι)1/2 is the sd of the projections of the data in the 
direction of the ith eigenvector).  
 
Statistical distances the easy way. 
 
Let x' be a row vector of a data matrix.  Then  
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Here is an R program to compute the statistical distances for an n by p data matrix. 
 
(Note: I used my.dist instead of just dist as my function name since R already has a 
function called "dist") 
 
 Note the loop for the computing the distance for each p-tuple. 
 
We can do this matrix-wise as well 
 
function (data)  
{ 
 n=length(data[,1]) 
 p=length(data[1,]) 
 diff=matrix(nrow=n,ncol=p) 
 distance=1:n  
diff=as.matrix(data-mean(data)) 
distance=diag((diff%*%ginv(cov(data))%*%t(diff))^.5) 
return(distance) 
} 
 
Note:   
 
I generate some multivariate normal data with a specific sample mean and covariance 
matrix.  Then I compute the eigenanalysis from the covariance matrix, and use this to 
compute the new uncorrelated coordinates.  Rescaling these with their sd, then using 
Euclidean distance, gives me the statistical distances of the original data.   
 
Here are the programs:  mat.ex generates the data and does the eigen approach 
my.dist uses the inverse covariance matrix approach.  If you execute 
my.dist(mat.ex())  you get the two identical vectors of statistical distance. 
 
mat.ex 
function (n=25,p=2,print=F,corr=.5)  
{ 



 cov=matrix(ncol=p,nrow=p) 
 for (i in 1:p){ 
  for (j in 1:p){ 
   cov[i,j]=corr} 
   cov[i,i]=1 
   } 
 data=as.data.frame(mvrnorm(n,c(rep(0,p)),cov)) 
 #plot(data) 
 cova=cov(data) 
 eigen=eigen(cova) 
 if (print==T){print(cov);print(data);print(cova);print(eigen)} 
 data=as.matrix(data) 
 ev=as.matrix(eigen$vectors) 
 ndata=data%*%ev 
 v1=(ndata[,1]-mean(ndata[,1]))/sd(ndata[,1]) 
 v2=(ndata[,2]-mean(ndata[,2]))/sd(ndata[,2]) 
 d=(v1^2+v2^2)^.5 
  print(d) 
 return(data) 
} 
my.dist 
function (data)  
{ 
 n=length(data[,1]) 
 p=length(data[1,]) 
 diff=matrix(nrow=n,ncol=p) 
 distance=1:n  
diff=as.matrix(data-mean(data)) 
distance=diag((diff%*%ginv(cov(data))%*%t(diff))^.5) 
return(distance) 
} 
 
Ch 3:  We skip most of it except 
 
Sample Mean and Sample Variance 
Generalized variance 
 
Sample Variance – see p 124 for sample variance S and generalized sample variance |S|. 
Interpretation of scalar |S| see equation 3-15 on p 126.   Use |R| when appropriate.  
 
Ch 4:  Multivariate Normal Distribution  
 
See density 4-4 p 150 
 
Bivariate case useful by analogy for understanding p-variate case.  
 



Connection  with statistical distance Eqn 4-7 p 153. 
 
Distribution of squared statistical distance Eqn 4-8 p 155.  Chi Sq (df=p when Σ known).  
 
See Remark p 164.   Statistical Distance is Euclidean Distance in the Transformed 
Variables.  
 
Exercise:  Analyze the dat in Table 4.4 using the techniques of Section 4.7.  Hand in 
Monday Sept 26.   Show code for whatever software you use.  


