
STAT 802  Applied Multivariate Analysis   Sept. 26, 2005 
 
Today:   
 
1.  Simulating and Understanding the Multivariate Normal.  
2.  The sum of squared statistical distances for the p-variate Normal (Result 4.7) 
3.  Sampling Distributions of the sample mean and sample covariance from p-Normal 
4.  Testing for Multivariate Normality (chi-square plots) 
5.  Transformations to Normality (Section 4.8) 
 
Bivariate Normal (ρ≠0 say) 

 
 How do you simulate it?  
 One way: generate 3 IID N(0,1) variates z1 z2 z3 
       Let x=z1+a z3 and y=z2 + a z3 where a=( ρ/(1−ρ))1/2 
Note also ρ =  a2/(1+ a2)  so we have, for example: 
 
a = 0 1 2 3 
ρ =   0 0.5 0.8 0.9 
 
> bvrnorm 
function (n=25, corr=.8)  
{ 
# program produces simulated normal data from bivariate standard normal bivariate 
population with means 0, sds=1 and correlation ="corr") 
 a=(corr/(1-corr))^.5 
 z=rnorm(n) 
 x=(rnorm(n)+a*z)/(1+a^2)^.5 
 y=(rnorm(n)+a*z)/(1+a^2)^.5 
 plot(x,y) 
 invisible(list(x=x,y=y)) 
} 
so you use  
a=bvrnorm(25,.8) 
and the output is of the form  
a[[1]] and a[[2]] (or a$x and a$y) 
 
Note mvrnorm does this for any p-norm including p=2, and also can set the means and 
sds of the population sampled as well.  Note the input is the population mean vector and 
the population covariance matrix.  (Note also that if the mean, sd, and corr are to be 
reproduced exactly, one would need to specify the parameter "empirical=T". ) To 
replicate the above (bvrnorm) with mvrnorm, use 
 
a=mvrnorm(n=25,mean=c(0,0), sigma= matrix(c(1,.8,.8,1),ncol=2))  
and the output will be of the form a[,1] and a[,2].  
 



2.  The sum of squared statistical distances for the p-variate Normal (Result 4.7) 
It is chi-square on p degrees of freedom.  Why?  
3.  Sampling Distribution of Sample Mean and Sample Covariance from p-Normal.  
 
Mle of µ and Σ - see Result 4.11 p 171  (note the n version of S is used) 
 
Sampling Distribution of  

! 

X  and S - Box p 174 
 
Note assumption of p-normality for above.   But for large samples,  
 
CLT p 177    
 
i) 

! 

X  is approx Np(µ, (1/n)Σ) 
ii) n(

! 

X -µ)'S-1(

! 

X -µ) is approx chi-square on p df.  
 
Can we check this with simulation?  Note:  The details of a simulation often clarify the 
result.  
 
With the program below, check that 
 
i) 

! 

X  is approx bivariate normal when p=2.  Use both estimated Σ and known Σ. 
ii) n(

! 

X -µ)'S-1(

! 

X -µ) is approx chi-square on p df.   Try p=2, chiplot=T, cutoff=6 and  
p=3, chiplot=T, cutoff=7.8.   
 
>clt.ex 
function (m=250,n=25,p=2,corr=.5,chiplot=F,cutoff=6)  
{ 
 cov=matrix(ncol=p,nrow=p) #we specify the cov matrix that we want to generate.  
 for (i in 1:p){ 
  for (j in 1:p){ 
   cov[i,j]=corr} 
   cov[i,i]=1 
   } 
 diff=matrix(nrow=m,ncol=p)   # initializes diff 
 for (i in 1:m) { 
 x=as.data.frame(mvrnorm(n,c(rep(0,p)),cov)) # This command uses  
 #mvrnorm from MASS package.  Use help(mvrnorm) for syntax. 
 diff[i,]=(n^.5)*t(mean(x)) 
 d[i]=n*t(mean(x))%*%solve(cov(x))%*%mean(x) 
   } 
 plot(as.data.frame(diff))    # need df so will do matrix plot if p>2 
 index=1:m 
 index=index[d>cutoff]  # 6 is chisq (.95) for 2 df 
 print(c("Number outside cutoff contour")) 
 print(length(index)) 
 pts=diff[index,] 



 points(pts,col="red",cex=2) 
 if (chiplot==T) {quartz(); 
     my.dotplot(d) 
 print(c("Mean and SD of ChiSq Stat (p df)")) 
 print(mean(d)) 
 print(sd(d))} 
 invisible(list(diff,d)) 
} 
4.  Testing for Multivariate Normality (chi-square plots) 
 
What if data is not normal?  
 
Try replace x by x+(x2)/10 in simulation program.  
Repeat look at distribution.  Inconclusive. 
 
What about using a chi-square plot ? 
 
chi.plot 
function (x,df)  
{ 
 x=sort(x) 
 l=length(x) 
 a=(1:l-0.5)/l 
 q=qchisq(a,df) 
 plot(q,x) 
} 
 
Try it with Normal and non-normal data.  
 
5.  Transformations to Normality. (p 194) 
 
Box p 194.   
 
In practice, try a few transformations, rather than estimate optimal λ in Box-Cox. 
 
Next time:  Ch 5 Hotellings T2 


