## Today: Asst 3 feedback

More Ch 8 Principal Components.
Feedback from Assignment 3 (ex $5.9+$ power ex)
5.9 a) and b) large sample is chi sq, small sample is $\mathrm{T}^{2}$
$5.9 \mathrm{~d})$ "using $\mathrm{m}=6$ " why?
power ex means and corr relationship: neg corr -> if means increase together, they are in direction of minor axis, so power increases faster as means leave 0 (in dir of major axis)
programs for ellipses. corr=0 picture expanded by evs, euclid distance, project for coords, and shift for means.

Ch 8:
p 435 comment re sigma vs rho
p 436 eqi-correlation pattern: try
$\mathrm{a}=$ mat. $\mathrm{ex}(\mathrm{n}=100, \mathrm{p}=14$, corr $=.5$ )
data $=\mathrm{a}[[1]]$
cor=cor(data)
plot(eigen(cor)\$values)


Note connection with "scree test".
Proportion or variance explained by first component is $\rho+(1-\rho) / p=.5+.5 / 14=0.54$
p 438 sample principal components (scalars) $\hat{y}_{i}=$ calculable from length of projection of observation x on ith eigenvector (inner product gives the scalar). variance of all these ith components is $\lambda_{\mathrm{t}}$ and cor between ith component and x is $\qquad$ see bottom p 438.

Note implications for interpretation of the component. Ex 8.3 p 439.
What flexibility is there in the signs of entries in a covariance matrix?
Star plots options.
$\mathrm{a}=$ mat. $\mathrm{ex}(\mathrm{p}=8)$
$\operatorname{stars}(\mathrm{a}[[1]])$


Calculating Principal Components and checking variances

```
a=mat.ex(p=8)
data=a[[1]]
eigen=eigen(cov(data))
pcs=data%*%eigen$vectors
var(pcs[,1])
[1] 3.585215
eigen$values[1]
[1] 3.585215
```

Exercise for Wed Oct 198.6 and 8.7 page 467 Optional.

