
STAT 802    Applied Multivariate Analysis  Oct. 17, 2005 
 
Today: Ch 9 Factor Analysis 
 
Informal Intro:  Recall the example zi ~ N(0,1) 
 
x1=z1+z2 
x2=z1+z3 
 
We found corr(x1,x2) = .5.  But does this correlation tell us about the existence of the 
model with z1 a common factor?    
 
What if we have  
 
x1=z1+z2+z3 
x2=z1            +z4 
x3=      z2            +z5 
 
Does the correlation structure enable us to recover the "common factor" structure?  
We will return to this "simple" example after a more formal intro to Factor Analysis. 
 
Factor Analysis:  Goal is to find the underlying, but unobserved, variables (called factors) 
on which the measured variables depend. It turns out to be possible to infer how to 
estimate these factors from the observed variables.  Of course, to do this, we need that the 
"factor model" described on p 479 is correct.  We can try to see how well the model is fit 
by looking at residuals, but since the model is not really identifiable from the data, this 
has limited impact in practice. The value of a factor analysis is gauged in practice by the 
interesting hypotheses it suggests!  Although there is a thriving field of confirmatory 
factor analysis, mostly pursued by psychologists and social workers, it is hard to separate 
the art from the science of it.  We will mostly focus on exploratory factor analysis – 
trying to find factors and explain variability in data this way.  
 
Model:  p 279 box 
 
Note this is for the p-variate rv X.  The variability of each component is broken into two 
parts by (L F +  ε)i = (LF)i + εi 

 
L is p x m    and   F is  m x 1, and εi is p x 1.  Note that εi and Fi are assumed mean 0 and 
uncorrelated so there are no more parameters here except the p variances.  (The 
covariance matrix of ε is assumed to be diagonal, Ψ. 
 
Note that we start out with (in the p-variate normal case) p means and p+p(p-1)/2 
covariances, a total of p(p+1)/2 parameters. 
 
The factor representation has p means, mp coefficients of L, and p variances of εi, for a 
total of 2p+mp or =p (m+2) parameters.  The components of F are random.  



 
So when (p+1)/2 > m+2, we are forcing the data into a constrained model.  i.e when 
m< ((p+1)/2)-2 or in other words m < (p-3)/2,  the factor model has fewer parameters 
than the full p-variate normal model.   
 
p      m not more than     parameters in p-normal    parameters in largest m-factor model 
-       -----------------         ---------------------------      ------------------------------------------- 
6  1   21    18 
7  1   28    21 
8  2   36    32 
9  2   45    36 
10  3   55    50 
 
So for FA to be useful, we are looking for a fairly drastic reduction of dimensions from p 
to m  
 



Like principal components, FA is most useful when  
 
1.  the number of factors is 1,2, or 3 
2.  we can give meaningful names to the factors. 
 
Structure of the covariance matrix: 
 
Note the assumptions about L and F.   
 
F is a rv independent of  ε. Moreover,  F has means 0 and covariance = Imxm 
 
The Imxm assumption can be relaxed (with difficulty) but the means 0 is wlog.  
 
And we assume ε is uncorrelated but can have variances ≠ 1.   i.e Ψ is diagonal 
 
Looking at the X = µ + L F + ε it may be intuited that we will have to use the correlation 
structure of X to estimate the split in variability between L F and ε.  Recall that both F 
and ε are unobserved (that is, even when we have data for X).  
 
Note also the direct results (p 480)  that Cov (X) = LL' + Ψ  and Cov(X,F) = L 
 
L is called the "factor loading" matrix since it shows how the factors are "loaded" onto 
the variables.  Note the assumption (another assumption!) of linearity in the model.  
 
More jargon:  The variance of each of the p components of X is to be separated into a 
component attributable to the unobserved factors, and a component due to the unobserved 
"errors".  The factor part of the variance is called the communality, and there is a  
communality hi

2 for each component variable Xi.  The "error" part ψi is called the 
"specific variance" since it has nothing in common with the "common factors" F.  The 
variance of Xi  can therefore be written as hi

2 + ψi.  Note that the communality hi
2

  must 
be the sum of the loadings2 in the ith row of the L matrix.  
 
 
Here is some output from the R factanal function for data generated by 
mat.ex(n=100,p=8) 
 
> b=factanal(data,2,scores="regression") 
> b 
 
Call: 
factanal(x = data, factors = 2) 
 
Uniquenesses: 
   V1    V2    V3    V4    V5    V6    V7    V8  
0.570 0.643 0.581 0.534 0.005 0.470 0.545 0.643  
 



Loadings: 
   Factor1 Factor2 
V1 0.570   0.324   
V2 0.395   0.448   
V3 0.434   0.480   
V4 0.625   0.276   
V5 0.234   0.970   
V6 0.687   0.242   
V7 0.450   0.502   
V8 0.558   0.212   
 
               Factor1 Factor2 
SS loadings      2.102   1.907 
Proportion Var   0.263   0.238 
Cumulative Var   0.263   0.501 
 
Test of the hypothesis that 2 factors are sufficient. 
The chi square statistic is 12.76 on 13 degrees of freedom. 
The p-value is 0.466  
> b=factanal(data,1,scores="regression") 
> b 
 
Call: 
factanal(x = data, factors = 1) 
 
Uniquenesses: 
   V1    V2    V3    V4    V5    V6    V7    V8  
0.601 0.613 0.562 0.565 0.446 0.581 0.543 0.704  
 
Loadings: 
   Factor1 
V1 0.632   
V2 0.622   
V3 0.662   
V4 0.660   
V5 0.744   
V6 0.648   
V7 0.676   
V8 0.544   
               Factor1 
SS loadings      3.384 
Proportion Var   0.423 
 
Test of the hypothesis that 1 factor is sufficient. 
The chi square statistic is 30.89 on 20 degrees of freedom. 
The p-value is 0.0566 



 
Comment: 
 
We know there is only one factor in this data since we know that the "intra-class" 
correlation matrix (the one with all off-diagonal elements the same) was used to generate 
the data. But we are almost directed to use two factors!  Lets try it again .... 
 
p 483  If L is a solution of Cov (X) = LL' + Ψ, so is LT where T is orthogonal 
transformation (L is p x m, T must be m x m).  Note we use "orthogonal" to mean 
TT'=T'T=I. 
 
We try to choose T so that L is easy to interpret.    
 
Estimation (Section 9.3) :  Use standardized variables.   
 
1. Principal Factor Method (use first m PCs, assign residual to ε - see box p 486.  
Principal Factor modification – iterate between communalities and adjusted correlation 
matrix – see pp 490-491 
) 
2. Max Likelihood Method  (assume normality – impose "harmless" constraint to obtain 
uniqueness) See p 492-493.  Gives same answer for S and R (up to an orthog 
transformation).   Is this surprising?  
 
Example comparing 1. and 2.   See Table 9.3 p 494. Also Table 9.4 p 496.  
 
We will see that Factor Rotation can improve the MLE solution for interpretability.  
Section 9.4 discusses Factor Rotation.  
 
9.5  Factor Score Estimation 
 
We can estimate "factor scores" which give us m-tuples of estimated data for the 
unobserved factors.  We can then plot these like we did for PCs.  
 
Two methods: 
 
1.  Regression Method (pp 513-514)  "Thomson's method" 
2.  Weighted Least Squares and MLE  (pp 511-512)  "Bartlett's" method. 
 
Read the R help for "factanal" 
 
Here is some output which uses the assumption that there is one factor (which we know is 
true for this simulated data). 
 
> a=factanal(data,1,method="regression") 
> a 
Call: 



factanal(x = data, factors = 1, method = "regression") 
 
Uniquenesses: 
   V1    V2    V3    V4    V5    V6    V7    V8  
0.505 0.468 0.472 0.584 0.565 0.569 0.467 0.555  
 
Loadings: 
   Factor1 
V1 0.703   
V2 0.730   
V3 0.727   
V4 0.645   
V5 0.660   
V6 0.657   
V7 0.730   
V8 0.667   
 
               Factor1 
SS loadings      3.815 
Proportion Var   0.477 
 
Test of the hypothesis that 1 factor is sufficient. 
The chi square statistic is 26.69 on 20 degrees of freedom. 
The p-value is 0.144  
 
To get the scores ..... 
 
> my.dotplot(a$scores) 
 

 
 
> factanal(data,1,method="Bartlett") 
 
Call: 
>a=factanal(x = data, factors = 1, method = "Bartlett") 
>a 



Uniquenesses: 
   V1    V2    V3    V4    V5    V6    V7    V8  
0.505 0.468 0.472 0.584 0.565 0.569 0.467 0.555  
 
Loadings: 
   Factor1 
V1 0.703   
V2 0.730   
V3 0.727   
V4 0.645   
V5 0.660   
V6 0.657   
V7 0.730   
V8 0.667   
 
               Factor1 
SS loadings      3.815 
Proportion Var   0.477 
 
Test of the hypothesis that 1 factor is sufficient. 
The chi square statistic is 26.69 on 20 degrees of freedom. 
The p-value is 0.144  
> 
> my.dotplot(a$scores) 
 

 
 

How do the two methods of producing scores compare?  
 



 
 

Lets see what scores look like for m=2 factors (we know second one is completely error) 
 

 
left is regression method. right is Bartlett method.  
 
Suggestion: These are not to hand in. 
 
1.  Pick a data set from Ch 9 that interests you.  Perform a FA on it including the 
estimation of factor scores.  Try to interpret the result.  Talk to me if you need any 
clarification of the outcome.  
 
2. Return to the introductory example with xi and zi.  How much identifiability of the 
model does the correlation matrix allow?  
 
 
 


