
STAT 802   Applied Multivariate Analysis  Oct. 19, 2005 
 
Today:  Sections 9.3-9.5 Clarifications and Applications 
 
Estimation (Section 9.3) :  Use standardized variables (means 0 and SDs = 1)  
 
The objective is to use 

! 

ˆ "  to estimate L.  Recall Σ = LL' + Ψ,  
                p x p = p x m . m x p + p x p  
 
1. a) Principal Component Method (use first m PCs, assign residual to ε - see box p 486)   
b) Principal Factor Modification – (iterate between communalities and adjusted 
correlation matrix – see pp 490-491) 
 
Example 9.3 First we use Principal Components approach 1a). 
 
eigen=eigen(E9.3) 
> loadings=eigen$vectors%*%diag(eigen$values^.5) 
> loadings 
          [,1]       [,2]        [,3]        [,4] 
[1,] 0.5598618 -0.8160981  0.04453561  0.04437464 
[2,] 0.7772594  0.5242021  0.33579190 -0.09028161 
[3,] 0.6453364 -0.7479464  0.07615553  0.03744292 
[4,] 0.9391057  0.1049187 -0.27203901 -0.18184384 
[5,] 0.7982069  0.5432281 -0.09972820  0.24045880 
             [,5] 
[1,]  0.128787099 
[2,]  0.013153309 
[3,] -0.130059531 
[4,]  0.000303964 
[5,]  0.001653934 
 
Eigenvalues suggest m=2 factors should do. 
 
> plot(eigen$values) 
 

 
 



> commies=loadings[,1]^2 + loadings[,2]^2 
> commies 
[1] 0.9794614 0.8789200 0.9758829 0.8929275 0.9322311 
> ones=rep(1,5) 
> specvar=ones-commies 
> specvar 
[1] 0.02053865 0.12107998 0.02411712 0.10707250 
[5] 0.06776888 
 
 
1a)  Factor Loadings are coefficients of the first m PCs.  Specific variances are diagonal 
elements of 

! 

ˆ "  - LL' = 

! 

ˆ "  (L is the matrix of m factor loadings.)  Note that the 
communalities, computed from subtracting the diagonal elements of  LL' from the 
original data covariances (or from 1 with standardized data), are useful descriptive 
statistics for the researcher:  How much do the original variables depend only on the 
common factors?   
 
1b) Suppose we guess the specific variances – to make this short, lets guess that they are 
what we learned from 1a) 
 
> specvar 
[1] 0.02053865 0.12107998 0.02411712 0.10707250 
[5] 0.06776888 
 
> LL=E9.3-diag(specvar) 
> eigen.LL=eigen(LL) 
> loadings=eigen.LL$vectors%*%diag(eigen.LL$values^.5) 
> loadings 
          [,1]       [,2]        [,3]         [,4] 
[1,] 0.5827236  0.7960398  0.01517805  0.040769478 
[2,] 0.7427103 -0.5226413  0.22950638 -0.034131641 
[3,] 0.6662649  0.7232420  0.06183476 -0.006177827 
[4,] 0.9137868 -0.1345592 -0.18259148 -0.079848756 
[5,] 0.7774556 -0.5590191 -0.06900716  0.101193413 
             [,5] 
[1,]  0.065746336 
[2,]  0.017590270 
[3,] -0.070945595 
[4,]  0.009978874 
[5,] -0.017012451 
> eigen.LL 
$values 
[1] 2.77453778 1.76052088 0.09482873 0.01948122 
[5] 0.01005428 
 
$vectors 



          [,1]       [,2]        [,3]        [,4] 
[1,] 0.3498383  0.5999488  0.04928854  0.29209702 
[2,] 0.4458863 -0.3938974  0.74528916 -0.24453957 
[3,] 0.3999923  0.5450835  0.20079954 -0.04426166 
[4,] 0.5485921 -0.1014128 -0.59293973 -0.57208443 
[5,] 0.4667457 -0.4213142 -0.22409088  0.72501037 
            [,5] 
[1,]  0.65568633 
[2,]  0.17542726 
[3,] -0.70753839 
[4,]  0.09951903 
[5,] -0.16966468 
 
The eigenanalysis is quite similar and so are the loadings, though not identical, to what 
we got with method 1a).  But we can improve 1b) by an iterative method.  Since the 
initial solution provides, amongst other things, specific variance estimates, we can repeat 
the method 1b) on the original correlation matrix using these new specific variances 
estimates instead of our initial guess.   
 
LL=E9.3-diag(specvar) 
> eigen.LL=eigen(LL) 
> eigen.LL 
$values 
[1] 2.77453778 1.76052088 0.09482873 0.01948122 
[5] 0.01005428 
 
$vectors 
          [,1]       [,2]        [,3]        [,4] 
[1,] 0.3498383 -0.5999488  0.04928854  0.29209696 
[2,] 0.4458863  0.3938974  0.74528916 -0.24453959 
[3,] 0.3999923 -0.5450835  0.20079954 -0.04426159 
[4,] 0.5485921  0.1014128 -0.59293973 -0.57208444 
[5,] 0.4667457  0.4213142 -0.22409088  0.72501039 
            [,5] 
[1,]  0.65568636 
[2,]  0.17542724 
[3,] -0.70753839 
[4,]  0.09951897 
[5,] -0.16966461 
 
> evals=c(2.774,1.7605) 
> evecs=cbind(eigen.LL$vectors[,1],eigen.LL$vectors[,2]) 
> loadings=evecs%*%diag(evals^.5) 
> loadings 
          [,1]       [,2] 
[1,] 0.5826672 -0.7960351 



[2,] 0.7426383  0.5226382 
[3,] 0.6662003 -0.7232378 
[4,] 0.9136982  0.1345584 
[5,] 0.7773803  0.5590158 
 
These are very close to the initial solution, because we had a good "guess" of the specific 
variances.  Notice that the sign is F2 is reversed, but this is inconsequential.  
 
Next we look at the  
 
2. Max Likelihood Method  (assume normality – impose "harmless" constraint to obtain 
uniqueness)  
 
We get a completely different answer from method 1.  
 
> factanal(factors=2,covmat=E9.3,rotation="none") 
 
Call: 
factanal(factors = 2, covmat = E9.3, rotation = "none") 
 
Uniquenesses: 
[1] 0.028 0.237 0.040 0.168 
[5] 0.052 
 
Loadings: 
     Factor1 Factor2 
[1,]  0.976  -0.139  
[2,]  0.150   0.860  
[3,]  0.979          
[4,]  0.535   0.738  
[5,]  0.146   0.963  
 
               Factor1 
SS loadings      2.241 
Proportion Var   0.448 
Cumulative Var   0.448 
               Factor2 
SS loadings      2.232 
Proportion Var   0.446 
Cumulative Var   0.895 
 
The degrees of freedom for the model is 1 and the fit was 0.0233  
 
??????????????????????? 
 



For details of mle See p 492-493.  Gives same answer for S and R (up to an orthog 
transformation).   Is this surprising?  Worrying! 
 
Example comparing 1. and 2.   See Table 9.3 p 494. Also Table 9.4 p 496.  
 
We will see that Factor Rotation can improve the MLE solution for interpretability.  
Section 9.4 discusses Factor Rotation.  
 
> loadings 
          [,1]       [,2] 
[1,] 0.5826672 -0.7960351 
[2,] 0.7426383  0.5226382 
[3,] 0.6662003 -0.7232378            <-----original loadings 
[4,] 0.9136982  0.1345584 
[5,] 0.7773803  0.5590158 
 
plot(loadings) 
> 
 

 
> promax(loadings) 
$loadings 
 
Loadings: 
 [,1]    [,2]   
[1,]        -1.004 
[2,]   0.928   0.115 
[3,]        -0.978             <------rotated loadings 
[4,]   0.796  -0.320 
[5,]   0.979   0.131 
 
                [,1]  [,2] 
SS loadings    2.462 2.096 
Proportion Var 0.492 0.419 
Cumulative Var 0.492 0.912 
 
$rotmat 



          [,1]       [,2] 
[1,] 0.7708126 -0.4836453 
[2,] 0.6797138  0.9067801               <----------orthonormal rotation transformation 
 
> varimax(loadings) 
$loadings 
 
Loadings: 
     [,1]   [,2]   
[1,]        -0.986 
[2,]  0.908        
[3,]  0.135 -0.974 
[4,]  0.827 -0.410                            <---------rotated loadings 
[5,]  0.957        
 
                [,1]  [,2] 
SS loadings    2.445 2.090 
Proportion Var 0.489 0.418 
Cumulative Var 0.489 0.907 
 
$rotmat 
          [,1]       [,2] 
[1,] 0.8215549 -0.5701294 
[2,] 0.5701294  0.8215549             <-----------orthonormal rotation transformation 
 
9.5  Factor Score Estimation 
 
We can estimate "factor scores" which give us m-tuples of estimated data for the 
unobserved factors.  The m factor scores are realizations of the random variables  
F1, F2, F3,..., Fm,  and we get a different set of these random variable realizations for each 
row of our data matrix.   So the vector of factor scores is comparable to the original data 
vector, but with fewer coordinates.   We can then plot these like we did for PCs.  
 
Note that the loading matrix L does not give these factor scores directly, except when the 
estimation of L is done my the principal component method which I labeled 1a). 
(comment p 513 top).  The formula for factor scores using mle estimates is given on p 
512 in the box there for the Bartlett method, and on p 514 (box) for the regression 
method.   In the former, the matrix 

! 

ˆ "  is given by the arbitrary constraint on the mle 
solution, and it is defined on bottom of page 511.  
 
Two methods: 
 
1.  Regression Method (pp 513-514)  "Thomson's method" 
2.  Weighted Least Squares and MLE  (pp 511-512)  "Bartlett's" method. 
 
Read the R help for "factanal" 



 
Here is some output which uses the assumption that there is one factor (which we know is 
true for this simulated data). 
 
> a=factanal(data,1,method="regression") 
> a 
Call: 
factanal(x = data, factors = 1, method = "regression") 
 
Uniquenesses: 
   V1    V2    V3    V4    V5    V6    V7    V8  
0.505 0.468 0.472 0.584 0.565 0.569 0.467 0.555  
 
Loadings: 
   Factor1 
V1 0.703   
V2 0.730   
V3 0.727   
V4 0.645   
V5 0.660   
V6 0.657   
V7 0.730   
V8 0.667   
 
               Factor1 
SS loadings      3.815 
Proportion Var   0.477 
 
Test of the hypothesis that 1 factor is sufficient. 
The chi square statistic is 26.69 on 20 degrees of freedom. 
The p-value is 0.144  
 
To get the scores ..... 
 
> my.dotplot(a$scores) 
 



 
 
> factanal(data,1,method="Bartlett") 
 
Call: 
>a=factanal(x = data, factors = 1, method = "Bartlett") 
>a 
Uniquenesses: 
   V1    V2    V3    V4    V5    V6    V7    V8  
0.505 0.468 0.472 0.584 0.565 0.569 0.467 0.555  
 
Loadings: 
   Factor1 
V1 0.703   
V2 0.730   
V3 0.727   
V4 0.645   
V5 0.660   
V6 0.657   
V7 0.730   
V8 0.667   
 
               Factor1 
SS loadings      3.815 
Proportion Var   0.477 
 
Test of the hypothesis that 1 factor is sufficient. 
The chi square statistic is 26.69 on 20 degrees of freedom. 
The p-value is 0.144  
> 
> my.dotplot(a$scores) 
 



 
 

How do the two methods of producing scores compare?  
 

 
 

Lets see what scores look like for m=2 factors (we know second one is completely error) 
 

 
left is regression method. right is Bartlett method.  
 



Best Method?  Johnson says on p 514 "...none is recommended as uniformly superior".  
 
Note the intuitive approach described on pp 515-516.  Remember that in math stat theory, 
simplicity is in danger of being under-valued! 
 
Section 9.6  Overview of FA strategy  See p 517 and example 9.14 following.  
 
Suggestion: These are not to hand in. 
 
1.  Pick a data set from Ch 9 that interests you.  Perform a FA on it including the 
estimation of factor scores.  Try to interpret the result.  Talk to me if you need any 
clarification of the outcome.  
 
2. Return to the introductory example with xi and zi.  How much identifiability of the 
model does the correlation matrix allow?  
 
 
Exercise to hand in Wed. Oct 26. 
  
Use the principal component approach and the mle approach to perform a factor 
analysis on data generated from the model shown in class. (I think it was .... 
  
x1=z1+z2 
x2=z1      +z3 
x3=      z2      +z4 
  
where zi are N(0,1) indept, and use a moderate sample size like n=25.)   Use 
factor rotation if it helps to clarify the solution.   
  
Which loading estimation method works best?  
How well are the specific variances estimated? 
How well is the "variance explained by factors" estimated by the sum of 
eigenvalues?  
  
Also, explore some other aspect of FA such as one of the following: 
  
1) what happens if several more independent xi  are added to the model? 
2) how are the results of the exercise above dependent on sample size?   
3) how big does the variance of z3 or z4 have to be to hide the factors (using 
n=25)? 
4) how reliable is the scree test for identifying the number of real factors present? 
5) anything else you think merits exploration .... 


