- 62. a. $E(X) = \alpha\beta = n\frac{1}{\lambda} = \frac{n}{\lambda}$; for $\lambda = .5$, n = 10, E(X) = 20
 - **b.** $P(X \le 30) = F\left(\frac{30}{2}; 10\right) = F(15; 10) = .930$
 - c. $P(X \le t) = P(at \text{ least } n \text{ events in time } t) = P(Y \ge n) \text{ when } Y \sim Poisson \text{ with parameter } \lambda t$. Thus $P(X \le t) = 1 - P(Y \le n) = 1 - P(Y \le n - 1) = 1 - \sum_{k=0}^{n-1} \frac{e^{-\lambda t} (\lambda t)^k}{k!}$.

- **a.** $P(10 \le X \le 20) = \frac{10}{25} = .4$
- **b.** $P(X \ge 10) = P(10 \le X \le 25) = \frac{15}{25} = .6$
- c. For $0 \le X \le 25$, $F(x) = \int_0^x \frac{1}{25} dy = \frac{x}{25}$. F(x)=0 for x < 0 and = 1 for x > 25.
- d. $E(X) = \frac{(A+B)}{2} = \frac{(0+25)}{2} = 12.5$; $Var(X) = \frac{(B-A)^2}{12} = \frac{625}{12} = 52.083$

112.

a.
$$F_{Y}(y) = P(Y \le y) = P(60X \le y) = P\left(X \le \frac{y}{60}\right) = F\left(\frac{y}{60\beta}; \alpha\right)$$
 Thus $f_{Y}(y)$
= $f\left(\frac{y}{60\beta}; \alpha\right) \cdot \frac{1}{60\beta} = \frac{y^{\alpha-1}e^{\frac{-y}{60\beta}}}{(60\beta)^{\alpha}\Gamma(\alpha)}$, which shows that Y has a gamma distribution with parameters α and 608.

b. With c replacing 60 in a, the same argument shows that cX has a gamma distribution with parameters α and cβ.

116.

a. $F(x) = \lambda e^{-\lambda x}$ and $F(x) = 1 - e^{-\lambda x}$, so $r(x) = \frac{\lambda e^{-\lambda x}}{e^{-\lambda x}} = \lambda$, a constant (independent of X); this is consistent with the memoryless property of the exponential distribution.