SOLUTIONS TO ASSIGNMENT \#7

4.

a. $\quad 58.3 \pm \frac{1.96(3)}{\sqrt{25}}=58.3 \pm 1.18=(57.1,59.5)$
b. $\quad 58.3 \pm \frac{1.96(3)}{\sqrt{100}}=58.3 \pm .59=(57.7 .58 .9)$
c. $58.3 \pm \frac{2.58(3)}{\sqrt{100}}=58.3 \pm .77=(57.5,59.1)$
d. 82% coefidence $\Rightarrow 1-\alpha=.82 \Rightarrow \alpha=.18 \Rightarrow \%_{2}=.09,50 z_{\gamma_{1}}=z_{09}=1.34$ and the interval is $58.3 \pm \frac{1.34(3)}{\sqrt{100}}=(57.9 .58 .7)$.
e. $n=\left[\frac{2(2.58) 3}{1}\right]^{2}=239.62$ so $\mathrm{n}=240$.
10.
a. When $\mathrm{n}=15,2 \lambda \sum X_{i}$ has a chi-squared distribution with 30 d.f. From the 30 d.f. row of Tabie A.6, the critical values that capture lower and upper tail areas of 025 (and thus a central area of 95) are 16.791 and 46.979 . An argument parallel to that given in Example 7.5 gives $\left(\frac{2 \sum x_{i}}{46.979}, \frac{2 \sum x_{i}}{16.791}\right)$ as a 95% C. 1. for $\mu=\frac{1}{\lambda}$. Since $\sum x_{i}=63.2$ the interval is $(2.69 .753)$.
b. A 99% coefidesce level requires using critical valoes that capture area. 005 in each tail of the chi-squared curve with 30 df ;; these are 13.787 and 53.672 , which replace 16.791 and 46.979 in a.
c. $V(X)=\frac{1}{\lambda^{2}}$ when X has an exponentizl distribution, so the standard deviation is $\frac{1}{\lambda}$, the same as the mean. Thus the interval of a is also a 95\% C. . for the standard deviation of the lifetime distribution.
20. Because the sample size is so large, the simpler formula (7.11) for the confidence interval for p is sufficient.
$.15 \pm 2.58 \sqrt{\frac{(.15)(.85)}{4722}}=.15 \pm .013=(.137, .163)$
36. $\mathrm{n}=26, \bar{x}=370.69,5=24.36 ; t_{05,25}=1.708$
a. A 95% upper coafidence bound:

$$
370.69+(1.708)\left(\frac{24.36}{\sqrt{26}}\right)=370.69+8.16=378.85
$$

b. A 95% upper prediction bound:

$$
370.69+1.708(24.36) \sqrt{1+\frac{1}{26}}=370.69+42.45=413.14
$$

46.

a. Using a normal probability plot, we ascertain that it is plausible that this sample was taken from a normal population distribution.
b. With $s=1.579, \mathrm{n}=15$, and $\mathcal{X}_{\text {00 } 14}^{2}=23.685$ the 95% upper confidence bound for G
is $\sqrt{\frac{14(1.579)^{2}}{23.685}}=1.214$
a. $P\left(\min \left(X_{i}\right) \leq \tilde{\mu} \leq \max \left(X_{i}\right)\right)=1-P\left(\tilde{\mu},<\min \left(X_{i}\right)\right.$ or $\left.\max \left(X_{i}\right)<\tilde{\mu}\right)$
$=1-P\left(\tilde{\mu},<\min \left(X_{i}\right)\right)-P\left(\max \left(X_{i}\right)<\tilde{\mu}\right)$
$=1-P\left(\tilde{\mu}<X_{1}, \ldots, \tilde{\mu}<X_{n}\right)-P\left(X_{1}<\tilde{\mu}, \ldots, X_{n}<\tilde{\mu}\right)$
$=1-(.5)^{n}-(.5)^{n}=1-2(.5)^{n-t}$, from which the confidence interval follows.
b. Since $\min \left(x_{i}\right)=1.44$ and $\max \left(x_{i}\right)=3.54$, the C.I. is ($1.44,3.54$),
c. $P\left(X_{(2)} \leq \tilde{\mu} \leq X_{(-1)}\right)=1-P\left(\widetilde{\mu},<X_{(2)}\right)-P\left(X_{(n-1)}<\widetilde{\mu}\right)$
$=1-\mathrm{P}\left(\right.$ at most one $\left.\mathrm{X}_{\text {: is below }}^{\mu}\right)-\mathrm{P}\left(\right.$ at most one X_{1} exceeds $\left.\tilde{\mu}\right)$
$1-(.5)^{n}-\binom{n}{1}(.5)^{1}(.5)^{n-1}-(.5)^{n}-\binom{n}{1}(.5)^{n-1}(.5)$
$=1-2(n+1)(.5)^{n}=1-(n+1)(.5)^{-}$
Thus the confidence coefficient is $1-(n+1)(.5)^{n-1}$, or in another way, a $100\left(1-(n+1)(5)^{n-1}\right) \& 5$ confidence interval.
58.
a. $P\left(\min \left(X_{i}\right) \leq \tilde{\mu} \leq \max \left(X_{i}\right)\right)=1-P\left(\tilde{\mu},<\min \left(X_{i}\right) \operatorname{or} \max \left(X_{i}\right)<\tilde{\mu}\right)$
$=1-P\left(\widetilde{\mu},<\min \left(X_{i}\right)\right)-P\left(\max \left(X_{i}\right)<\widetilde{\mu}\right)$
$=1-P\left(\widetilde{\mu}<X_{1}, \ldots, \tilde{\mu}<X_{n}\right)-P\left(X_{1}<\widetilde{\mu}, \ldots, X_{n}<\widetilde{\mu}\right)$
$=1-(.5)^{n}-(.5)^{n}=1-2(.5)^{n-1}$, from which tbe confidence interval follows.
b. Since $\min \left(x_{i}\right)=1.44$ and $\max \left(x_{i}\right)=3.54$, the C.1. is $(1.44,3.54)$,
c. $P\left(X_{(2)} \leq \tilde{\mu} \leq X_{(n-1)}\right)=1-P\left(\widetilde{\mu},<X_{(2)}\right)-P\left(X_{(n-1)}<\widetilde{\mu}\right)$
$=1-\mathrm{P}\left(\right.$ at most one X_{t} is below $\left.\tilde{\mu}\right)-\mathrm{P}\left(\right.$ at most oce X_{1} exceeds $\left.\tilde{\mu}\right)$
$1-(.5)^{n}-\binom{n}{1}(.5)^{\prime}(.5)^{-1}-(.5)^{n}-\binom{n}{1}(.5)^{n-1}(.5)$
$=1-2(n+1)(.5)^{n}=1-(n+1)(5)^{-1}$
Thus the confidenet coefficient is $1-(n+1)(5)^{-1}$, or in another way, a $100\left(1-(n+1)(5)^{n-1}\right) \& 6$ confidence interval.

