Ch 8: Exercises 10,26,27,40,52
\#10 - Here is some quite detailed help for this exercise.
Population Strength Distribution is $N(\mu, \sigma=60)$ - units are $K N / m^{2}$
a) $\mathrm{H}_{0}: \mu=1300$
$\mathrm{H}_{\mathrm{a}}: \mu>1300$
b) \bar{X} is $\mathrm{N}(1300,60 / \sqrt{20})=\mathrm{N}(1300,13.416)$ when H_{0} is true.

Rejection region is specified as $\bar{X} \geq 1331.26$
P (type I error) $=\mathrm{P}(\bar{X} \geq 1331.26)$ assuming H_{0} true
c) With the assumption $\mu=1350, \mathrm{P}(\bar{X} \leq 1331.26)=\ldots$
d) We need to change the rejection region $\bar{X} \geq \mathrm{c}$ so that $\mathrm{P}(\bar{X} \geq \mathrm{c})=.05$ where $z=(c-1300) / 13.416=1.645$
(since $N(0,1)$ table has $P(z \geq 1.645)=.05)$.
Increasing the type I error rate will reduce the type II error rate when $\mu=1350$. The new type I and type II error rates are
e) (see calculation in part b)).
\# 26. The rejection region (of the $\mathrm{H}_{0}=\mu=50$) in this case, for type I error $=.05$, must be $z>1.645$. We need to compute z based on our sample mean data and compare with 1.645.
\# 27 Here we need t (one tail) for 41 degrees of freedom corresponding to a type I error rate of .01, and from table A.5, this is -2.423 so $\mathrm{P}(\mathrm{t} \leq-2.423)=.01$. So the test statistic t needs to be computed for comparison with -2.423 .
\# 40. a) $40 / 500$ is 8% which is greater than the premise of 5%. So the question is whether a sample proportion of .08 or more would occur if the true population proportion were .05 . We need to see how large a proportion would be exceeded with probability 0.01 .
b) This is a type II error probability.
\#52 No advice ... (unless you talk to me ...)

