Assignment #8 Due March 26

Ch 8: Exercises 10,26,27,40,52

#10 - Here is some quite detailed help for this exercise.

Population Strength Distribution is N(μ , σ =60) - units are KN/m²

a) H_0 : $\mu = 1300$ H_a : $\mu > 1300$

b) \overline{X} is N(1300,60/ $\sqrt{20}$) = N(1300,13.416) when H₀ is true. Rejection region is specified as $\overline{X} \ge 1331.26$ P(type I error)= P($\overline{X} \ge 1331.26$) assuming H₀ true

c) With the assumption $\mu = 1350$, P($\overline{X} \le 1331.26$) =

d) We need to change the rejection region $\overline{X} \ge c$ so that $P(\overline{X} \ge c) = .05$ where z = (c-1300)/13.416 = 1.645(since N(0,1) table has P($z \ge 1.645$)=.05). Increasing the type I error rate will reduce the type II error rate when

 μ = 1350. The new type I and type II error rates are

e) (see calculation in part b)).

26. The rejection region (of the $H_0=\mu = 50$) in this case, for type I error = .05, must be z>1.645. We need to compute z based on our sample mean data and compare with 1.645.

27 Here we need t (one tail) for 41 degrees of freedom corresponding to a type I error rate of .01, and from table A.5, this is -2.423 so P(t \leq -2.423)=.01. So the test statistic t needs to be computed for comparison with -2.423.

40. a) 40/500 is 8% which is greater than the premise of 5%. So the question is whether a sample proportion of .08 or more would occur if the true population proportion were .05. We need to see how large a proportion would be exceeded with probability 0.01.

- b) This is a type II error probability.
- #52 No advice ... (unless you talk to me ...)