#10

Population Strength Distribution is N($\mu,\sigma=60$) - units are KN/m² a) H₀: $\mu = 1300$ H_a: $\mu > 1300$ (This is tricky – read question carefully – we are trying to prove $\mu > 1300$, and we are doing this by `testing credibility of H₀)

Rejection region is specified as $\overline{X} \ge 1331.26$ P(type I error)= P($\overline{X} \ge 1331.26$) assuming H₀ true. = P(z \ge ((1331.26-1300)/13.416)) = P(z ≥ 2.33) = 1-0.9901 = .01

c) With the assumption $\mu = 1350$, P($\overline{X} \le 1331.26$) = P($z \le -1.40$) =.081

d) We need to change the rejection region $\overline{X} \ge c$ so that $P(\overline{X} \ge c)=.05$ where z= (c-1300)/13.416= 1.645(since N(0,1) table has P($z\ge 1.645$)=.05). Solving for c=1322.07. By choosing this larger type I error rate (.05 compared to .01 in part b)) we can reduce the type II error rate (which was .081 in part c)) to P($\overline{X} \le 1322.07$) when $\mu = 1350$, which is P($z\le (1331.26-1350)/13.416$) =P($z\le -2.08$) = .0188

- e) $z \ge 2.33$ (see calculation in part b)).
 - 26. Reject H_o if $z \ge 1.645$; $\frac{s}{\sqrt{n}} = .7155$, so $z = \frac{52.7 50}{.7155} = 3.77$. Since 3.77 is ≥ 1.645 , reject H_o at level .05 and conclude that true average penetration exceeds 50 mils.
 - 27. We wish to test H_o: $\mu = 75$ vs. H_a: $\mu < 75$; Using $\alpha = .01$, H_o is rejected if $t \le -t_{.01,41} \approx -2.423$ (from the df 40 row of the t-table). Since $t = \frac{73.1 - 75}{5.9 / \sqrt{42}} = -2.09$, which is not ≤ -2.423 , H_o is not rejected. The alloy is not suitable.

40.

a. P = true proportion of current customers who qualify. H_a: p = .05 vs H_a: p > .05, $z = \frac{\hat{p} - .05}{\sqrt{.05(.95)/n}}, \text{ reject H}_{o} \text{ if } z \ge 2.58 \text{ or } z \le -2.58. \quad \hat{p} = .08, \text{ so}$ $z = \frac{.03}{.00975} = 3.07 \ge 2.58, \text{ so H}_{o} \text{ is rejected. The company's premise is not correct.}$

b.
$$\beta(.10) = \Phi\left[\frac{.05 - .10 + 2.58\sqrt{.05(.95)/500}}{\sqrt{.10(.90)/500}}\right] = \Phi(-1.85) = .0332$$

52.

- a. For testing H_o: p = .2 vs H_a: p > .2, an upper-tailed test is appropriate. The computed Z is z = .97, so p-value = 1 − Φ(.97) = .166. Because the p-value is rather large, H_a would not be rejected at any reasonable α (it can't be rejected for any α < .166), so no modification appears necessary.</p>
- b. With p = .5, $1 \beta(.5) = 1 \Phi[(-.3 + 2.33(.0516))/.0645] = 1 \Phi(-2.79) = .9974$