Today: Review for Midterm 2

Major topics since MT1:

Sampling wild animal populations - understanding sampling
Correlation coefficient - how closely two variables are related
Zipf's law - finding regularity in a chaotic world
Binomial probability distribution model - useful model for counts
Normal probability model - useful model for averages and proportions
Sampling in several contexts - understanding the usefulness of random sampling
Sampling with and without replacement - implications of the difference
Using 0-1 populations: variability of sample proportions (and square root law)
Randomized response technique - another sampling exercise
Lotteries - how they work - average net returns
Survival analysis - strategies for estimation from partial data

More detail: Important Methodological Techniques

1. Sampling Framework:

Population - what we want to know about E.G. SFU undergrad population Sample - the part of the population that we have selected Sampling Method - usually random so can predict variability
Numerical summary of Sample - often mean (or proportion) and SD, or sometimes a graph
Derived Information - often the variability of the mean (or proportion)
Purpose of mean and its variability? To describe the population mean.

Example: Population: Voters preferences for candidates in municipal elections Nov 16 Sample: Based on "Sampling Fram" - Voting lists?
Sampling Method: Possibly random sampling
Numerical summary: Mean and SD (Use 0-1 formula if appropriate)
Derived Information: proportion preferring candidate A in sample and its SD

2. Sampling Variability in 0-1 populations

Supposea large population is 55\% type A and 45% other types (members of the Yuppee Club?)
Consider the proportion of type A in a sample of size 25 from the large population.

There are two situations we know how to deal with:

Situation 1: The 55% is unknown to the investigator but the sample proportion is observed, say $15 / 25=.6$.
The sample proportion of 0.6 is an estimate of the poulation proportion of type A.
i.e. we estimate 60% type A in the population. But what is the precision of this estimate?

An equivalent question is What is the variability of this estimate? (Important idea).
The variability of a sample proportion is estimated in this case by
(the estimated population SD) $/ \sqrt{25}$
The estimated popoulation $\mathrm{SD}=\sqrt{p(1-p)}=\sqrt{(.6)(.4)}=.50$
So the SD of the sample proportion is approx $.50 / 5=0.1$
The estimated population proportion is $.6 \pm .1$

Situation 2: The 55% is known and so we are not trying to estimate it. But we may be interested in what the variability would be IF $\mathrm{p}=.55$.

SD of sample proportion $=$
(the SD of the population) $/ \sqrt{25}=\sqrt{p(1-p)} / \sqrt{25}=\sqrt{(.55)(.45)} / \sqrt{25}=.49 / \sqrt{25}=.098$ and so the distribution of the sample proportion is described as having mean .55 and SD $=.098$ exactly.

This is not an estimate!

3. Distribution of means and proportions - Normal Distribution

Averages tend to have a Normal distribution (so do sums):

What do you have to know about Normal distributions?

Bell shaped (symmetrical, not skewed) 68\% within 1 SD, 95% within 2 SDs, 99.7% within 3 SDs.

4. Correlation Coefficient

Closeness to a line of the points in a scatter diagram of two variables (e.g. height and weight)
Average product of variables after they have been "standardized" (subtract mean and divide by SD for each variable).
close to ± 1 if strongly related (linearly) and to 0 if not.

Does not measure non-linear relationships.

Other Contextual Familiarity:
animal population estimates
Zipf's law applications
Uses of sampling in Jury, CPI, Accounting, Census, ...
Lottery ideas
Survival Durations (car accidents)

