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Embarrassing Questions?  
 
Generally, I think teachers of statistics should be embarrassed if the dogma they 
are teaching is patently nonsensical, clearly out-of-date, or of no practical use.   
They should also be embarrassed if the statistical dogma that would be most useful 
to students is omitted from the statistics courses.   I have arranged my more 
detailed comments according to these categories of atrocities.   
     
1. Patent Nonsense: 
 
1.1 Is "variance" a reasonable measure of variation?  
 
 No! The units are inappropriate.  SD has the right units. The nomenclature  
is unfortunate since it would suggest that the answer is Yes.  The reason this 
happened is that in pre-computer days, it was important to have things that could 
be easily computed by hand, and variances were easier than SDs because they 
avoided the square root operation.  This is no longer a convenience of any 
importance. 
 
 Mathematicians may argue that variance has many convenient properties 
that the SD does not have, such as its ANOVA partition;  but this argument is 
about how theorems are proved, and not about the definition of appropriate 
summary measures (i.e. statistics).  
 
1.2 What aspects of an analysis-of-variance table convey useful information? 
 
 The P-value.  Everything else is for the hand-calculation routine for 
computing the P-value.  But computers now do the calculation, and even 
statisticians no longer compute this P-value by hand.  The logic of analysis of 
variance is useful for both scientists and statisticians to understand, but the analysis 
of variance table does not help explain this logic - in fact, it obscures it! 
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(The key, of course, is that the standard error of a mean is the SD of the individual 
observations divided by sqrt(n), and this fact is what leads us to use the size of a 
variance ratio as an indicator of the evidence against the equality of group means.)   
 
 The argument for banishing most of the analysis-of-variance table from 
statistical reports of data analysis, except the P-value, should not be taken as a 
criticism of the testing procedure itself.  It is simply that the demonstration of the 
calculation procedure in particular cases is of no interest to most audiences, 
including statisticians and scientists..  
 
1.3 Is the P-value a reasonable quantity to compute in evaluating the credibility of 
an hypothesis? Why is .05 considered an appropriate critical P-value?  
 
 It may be argued that it is reasonable in the sense that a decision on 
credibility clearly should be based on some monotonic function of the P-value. The 
more abnormal the data under the hypothesis, the stronger the evidence against the 
hypothesis, and the P-value does move in the right direction.  However, so do 
many other monotonic functions of the P-value - so this argument alone is not a 
compelling one in favor of the P-value.  It is sometimes argued that the P-value 
measures the probability of the sample under the hypothesis, but actually it 
measures the probability of the observed sample and many others not observed. 
Some argue the likelihood ratio is more reasonable, and I agree.  However the 
tradition of P-value will be with us for some time yet, and there is no denying that 
it has pragmatic usefulness, so it is good to teach it anyway.  We should be aware 
though that the world is waiting for a better method, and we should not be too 
dogmatic about it with students. 
 
 One aspect of this dogmatism that really should be noted for students is the 
arbitrariness of the conventional .05, .01, and .001 critical P-values.  The choice 
among these or other critical P-values is arbitrary, (even if guided by a subjective 
opinion about costs of inference errors),  and so it does not make much sense to 
worry about whether we have the observed P-value computed correctly to the third 
decimal place, or even to the second decimal place.  To emphasize this point, 
should a statistician who goes through life using alpha=.001 be paid more than one 
who uses alpha = .10, because he/she makes fewer type I errors?  No, because 
he/she will make more Type II errors, and we don't have any routine way of 
choosing the best mix of these, since different situations call for different mixes.   
Even in a particular instance, there is not a routine way of choosing an optimal 
mix, since the choice of loss function is not routine.  
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 We must be candid about the ad-hoc nature of traditional hypothesis testing, 
and not portray it as an optimal decision-making procedure, because it 
has many serious failings as such. 
 
1.4 What is "theory" as opposed to "practice", and how does this distinction apply 
to the discipline of statistics? Do we teach this theory to anyone? Should we teach 
it to everyone? 
 
 In any discipline, the "theory" is the collection of principles that are used 
again and again in different situations to solve the problems of interest to the 
discipline.  I use the phrase "generally applicable concepts" to describe these 
"gems" that form the basis of a discipline.  In other words, theory is not really 
"opposed" to practice at all, but rather the collection of things that are most "able-
to-be-practiced" in contexts that will arise in the future.  If we teach "practice" 
without teaching theory, we are only teaching how to operate in known contexts of 
the past.  This can be useful in many situations, but a university education usually 
emphasizes the ability to adapt to the unknown, rather than only to take advantage 
of what is already known.   
 
 In Statistics, the theory consists of the "big ideas" that help us time and again 
to sort out the complexities involved in interpreting data that is subject to 
unexplained variation, or "randomness" as we like to label it.  Some of these ideas 
are best described mathematically, but many have little to do with mathematics.  
For example, the idea that a model simplifies the reality it describes, is an idea that 
is familiar to architects, political scientists, and dentists, and they do not need to be 
mathematicians to understand this idea.  The point is that to focus on statistical 
theory as a subset of mathematics is guaranteed to convey a wrong impression of 
what is important to statistical theory. We have to teach students that statistical 
theory is not mathematics, but rather statistics, a different discipline.   Applied 
scientists, engineers, and investment analysts each make serious use of 
mathematics without considering that the theory of their disciplines is primarily 
mathematics -- what self-respecting communications engineer would agree that he 
should be examined in his discipline by a mathematician?  The point here is that 
mathematics is a powerful tool useful to many disciplines, including statistics, but 
the "theory" of these disciplines is not to be judged by the quality of the 
mathematics used, and neither should statistics.   
 
 We need to abolish the concept of "service" courses, in favor of "basic" 
courses, and to teach basic statistical theory to everyone who wants to know 
something about the discipline of statistics, including the mathematicians.   
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Anyone who wishes to become a career statistician should take additional courses 
in mathematics and statistics.  But career statisticians still need to understand the 
non-mathematical basics of the discipline, and their introductory courses must not 
skimp on these aspects in favor of the mathematical devices. The big picture must 
be in view before the mathematical details make sense.  
 
 The proposal here is that all students in statistics courses must be taught the 
basic theory, and that this need not involve mathematics beyond the high-school 
level.  Students seeking an in-depth treatment must take additional courses in 
statistics, and some of these additional courses will require a stronger mathematical 
background.  But it is important that the “in-depth” treatment begin with the big 
ideas of statistics, and most of these can be conveyed without higher mathematics.  
Using calculus in the introductory course in statistics obscures the central themes 
of statistics.  
 
1.5 What is the purpose of a confidence interval?  Does it do the job that is 
needed? 
 
  A confidence interval provides an interval estimate of a parameter value.  
However, contrary to some statistical theorists, most users of statistics really just 
want to know where the values of the distribution tend to lie, and they are not so 
interested in the parameter of the distribution.  A confidence interval has a role to 
play but it is a fairly minor one. Most students think that a confidence interval does 
tell them where the distribution is, and not just its mean, and it is not surprising 
that this misconception prevails.  Students apparently perceive that an estimate of 
the whole distribution is a natural thing to report from a sample, and one can easily 
accept this perception.  If we only teach confidence intervals and ignore the 
estimation of whole distributions, we are bound to mislead students.   
 
 The focus of theoretical statisticians on parameter values derives from a 
desire to describe, in mathematically tractable terms, the complexity of frequency 
distributions.  As our ability with computers to cope with whole distributions, 
instead of only their parametric approximation, our need for parametric inference 
will decline.  Then confidence intervals will fade even further in importance, at 
least by those users who really understand what they describe. 
 
1.6 What is the purpose of a hypothesis test? Does it do the job that is needed? 
 
 It is sometimes described as a decision-making technique.  But it does not 
really make decisions, it only weighs evidence against the null hypothesis.  We 
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must admit to students that "accepting a null hypothesis" is very different from 
proving, or even deciding, that the hypothesis is true, or that a hypothesis is 
believable.  Similarly, we must point out that "rejecting the null" can be a "nit-
picking" affair, in the sense that the null may be, for all practical purposes, true, 
and still be rejected, if the sample is large enough. Without a serious discussion of 
loss functions (or utility functions), a proper decision-making procedure cannot be 
devised. We have either to refrain from describing hypothesis testing as a decision-
making procedure, or else go into the details.  Of course,  the role that hypothesis 
testing does properly play is of value to scientists and others, but it is not really a 
decision-making procedure, as it is so often portrayed.  
 
1.7 Is regression a curve-fitting technique?  
 
 Only in a very specialized sense, as a prediction curve.    For a given pair of 
variables there are 2 ways to regress one of them on the other, and the choice 
produces two very different "fits". So the  regression fit to a bivariate data set is not 
a well-defined concept.  Regression is better described as a prediction technique, or 
as a method to determine predictive relationships.  
 
 If there is need for a fit to bivariate data, but where no prediction is 
contemplated, then the fit should be assessed using distances of the data points 
from the curve that are perpendicular to the fitted curve.  
 
1.8 If there are two ways to measure one thing, is the correlation between the two 
measures a reasonable guide to the degree to which one measure can substitute for 
another? 
 
 No.  The correlation is independent of location and scale, and location and 
scale are important ways that two measurement techniques can be dissimilar.  
Some measure based on the difference in the two measurements is needed, such as 
the so-called “technical error of measurement”.   
 
1.9 What fact do we need to know in interpreting the magnitude of the correlation 
between two variables? 
 
 We need to know how the range of the variables have been determined.  Has 
a population been sampled (usually not)?  If not, how have the cases under study 
been selected.  If we want to know the correlation between height and weight, it 
matters a lot whether we include children, both sexes, athletes, etc.  In fact we can 
manipulate the correlation by choosing the population sampled.  (Note that this 
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same problem affects the meaning of R-squared as a measure of the extent to 
which X determines Y in a regression.)  
 
2. Out-of-Date: 
 
2.1 Are probability models needed for most data analyses? 
 
 No!  The need for anything other than the normal distribution is rare, at least 
in most traditional data analyses.  Nonnormality (often perceived as skewness) is 
usually dealt with by symmetrizing transformations, and treating the data as if it 
were normal.   Poisson and Binomial probabilities are often treated  
as approximately normal. Testing for normality is rarely more rigorous than 
checking the linearity of a normal probability plot.   
 
 In other words, most data analyses require little more probability than the 
normal distribution.  Of course, students need to understand independence and 
mutual exclusiveness, but these ideas do not require much sophistication about 
probability models.  Basic probability ideas like "long run relative frequency" and 
"sampling variability" need to be understood well, but these ideas can be 
thoroughly explained without any reference to negative binomial or gamma 
distributions.   
 
 The argument here is not that probability modeling has no use in data 
analysis, but rather that the usual procedures do not require an understanding of 
these models for their execution. We argue in 4.10 below that more use could be 
made of probability modeling, for statistical analysis.   
 
2.2 Is it necessary for students to be able to compute simple statistics -- like 
standard deviations and F-statistics -- quickly and accurately?   
 
  Only in the sense that they have to know how to use statistical software.  It 
is not useful to have students using calculators to demonstrate that they know how 
to use a formula or procedure.  Computers do this.  Students have to know when 
certain calculations are appropriate, what outcomes are reasonable in view of the 
data, and how to interpret results.  But the mechanics of the procedure is something 
they will never have to reproduce without use of a computer.  
 
2.3 Do students know how to make use of residual plots? 
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 Modern texts do emphasize that residual plots are important in evaluating a 
model, at least in the regression setting.  This has come about since computers 
have made the construction of residual plots very easy to do, and feasible to do 
routinely.  But how many students understand how to use the residual plot to 
improve the model? The iterative nature of model-fitting, emphasized by George 
Box, does not receive much attention in "theory" courses.  Yet iterative modeling it 
is an important part of the generally applicable concepts of statistics, and should be 
included in the basic courses.  This is just one aspect of the important impact of 
computer developments on statistical theory.  This idea is repeated as a small part 
of the question 2.4.   
 
2.4 Has the computer revolution had any effect on the discipline of statistics, as 
taught in university courses?  Are formulas for hand-calculation of sums of squares 
still taught?  What use is made of the following computer-intensive methods in 
elementary statistics courses? 
 
i) computer graphics for data summary 
ii) computer graphics for data analysis 
iii) computer simulations 
iv) resampling methods such as the bootstrap 
v) iterative approach to modeling and analysis 
vi) sorting data by variables of interest 
 
 The effect on university courses has been slight, judging by the texts that are 
commonly used.  While "service course" text books have become a much larger 
proportion of the statistics textbook market, as a result of the demand by non-
statistics departments for application-oriented courses in statistics, it is not true that 
these textbooks have changed much in their list of topics: histograms, sampling 
distributions, confidence intervals,  hypothesis tests, regression and anova. But 
these courses should be responding to the changing environment of the computer 
age.  We don't need hand-calculation formulas for sums of squares that obscure the 
nature of the thing calculated.  Moreover, the items listed in i) to vi) above are at 
least as important as the traditional topics and should be included in a first course 
in statistics.   
 
2.5 Is it preferable to use a parametric model, rather than a nonparametric model, 
when we are summarizing a predictive relationship?  
 
 Not usually.  Most models are for empirical description, rather than 
mechanistic explanations.  When we fit a quadratic curve to some sales trends, we 
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do not mean to imply that the nature of sales is inherently quadratic, but merely 
that this curve provides a close fit. Techniques such as "loess" (Cleveland, 1993) 
are general purpose smoothers that perform the same function without requiring 
any assumption about the parametric form of the relationship under study.  The 
need for parametric models in pre-computer days was motivated by the difficulty 
of communicating relationships graphically -- but with computers, the loess kind of 
fit can be easily presented and can also be easily comprehended.  These 
nonparametric fits need to replace some of the time spend on teaching parametric 
fits.   
 
3. Of No Practical Use: 
 
3.1 Is it important to teach students how to test that a statistical model is a correct 
one?  
 
 All models are wrong!  The utility of a model is in the degree to which it 
simplifies the reality it represents, not in the extent to which it duplicates this 
reality.  A perfect model is not really a model.  (Even a model airplane is too 
small!)  When we encourage students to check assumptions, do we really expect 
them to ensure that the assumptions are exactly valid?  Of course not.  What we 
hope is that the violations of the assumptions are such that they suggest an 
improvement to the model, a better fit without adding too much complexity. To 
test "goodness-of-fit" does not make as much sense as to measure the goodness-of-
fit, but there are no standard techniques to do the latter.   
 
3.2 Do students learn the BIG ideas of statistical theory? 
 
 Apparently not.  How many students realize that a graphical summary of a 
data analysis is usually the most effective, or that the response rate in a sample 
survey does not tell us much about the danger of response bias, or that a 
confidence interval does not tell where the distribution roams, or that a hypothesis 
test cannot prove that the null hypothesis is true.  Most students think the big ideas 
of statistics are the formula for the normal density and that P<.05 proves the null is 
false.  This bias toward the importance of mathematical things is hazardous for 
instruction in statistics per se.  
 
 The first course in statistics should make clear those statistical concepts that 
are most useful for modern practice. Non-mathematical students will expect this.  
The students who are strong in mathematics will never realize what the big ideas 
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are, if the course requirements do not pull them away from their dependence on 
algebraic formalisms.   
 
3.3 Is instruction in statistical computing specific to one brand of software, or can 
it be used with any statistical software?  
 
 University courses in statistics should not put too much emphasis on a 
particular computer package.  Once students know one package, courses should 
allow students to use any package they have access to.  This approach emphasizes 
that statistics courses should teach the big ideas, not the details of particular 
software.  
 
3.4 Are students' minds actively engaged while attending statistics lectures?  
 
 From what I hear from students, usually not!  The textbooks, and some 
instructors, seem to convey the message that statistics exams test whether students 
have memorized the standard procedures of statistical inference.  So students are 
filtering out comments about concepts and judgment, since they assume this is not 
examination fare.  This does not encourage two-way communication in the 
classroom, or even successful one-way communication of ideas.  
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3.5 Are teachers of statistics experts in application of the theory?  
 
 Many have gone from Ph.D. in statistics to teach statistics without ever 
having to apply what they have learned.  It is likely that they will not know what  
the "generally applicable" concepts are, since they have never applied any 
concepts.  One remedy for this is for the instructor to get involved with data-based 
projects done by the students -- everyone can learn about statistical theory this 
way, including the instructor! 
 
3.6 Do students recognize the great value to their careers of a thorough 
understanding of statistics?  
 
 Service courses in statistics are usually compulsory, so we cannot take much 
encouragement from the large numbers in these courses.  Optional selection of 
service courses is not nearly so common.  
 
 Statistics as a major attracts a fairly small proportion of students, especially 
when compared with huge numbers taking all those service courses in statistics.  
Many students have supposedly been familiarized with the discipline, but very few 
decide to choose it as a career.  One wonders what does motivate those few who do 
choose statistics?  Is it the prospect of gaining an employable skill?  Is it a way to 
use a training in mathematics without having the talent for abstraction that pure 
mathematics requires?  Is it a love of arcane formulas and an inclination for 
compulsive checking of arithmetic?  If so, these motivations should concern us. 
One hopes that students are drawn by the generality of the concepts for the conduct 
of good research, and for the opportunity that expert statisticians have, to get 
involved in collaborative research with others.  Our courses should appeal to these 
latter motivations.  
 
 Statistics has the notoriety of being loved by believers and hated by 
everyone else.  But the subject is not really so crisply defined as to make this a 
reasonable state-of-affairs.  Apparently, we are teaching statistics as if it were a 
religion, instead of presenting it as a professional tool.  The theory of statistics is 
still very crude and in desperate need of fresh ideas.  Teachers who present 
statistical theory as a tidy collection of optimal strategies are not doing the 
discipline a favor -- they are misleading the potential users and encouraging 
skepticism about the real value of the subject. There are good reasons why so many 
researchers groan at the thought that they will have to use some statistical tools -- 
teachers of statistics have to understand what these are and try to make suitable 
adjustments to their teachings.  
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3.7 Do students receive adequate training in integration and differentiation so that 
they can solve real-world statistical problems creatively?  
 
 One course in calculus is probably enough for 99.9 percent of the problems 
that statistical practitioners will face. Programs like MAPLE that do mathematical 
manipulation, differentiation and integration symbolically can bypass some of the 
training that used to be thought essential, like substitution tricks for integration, 
and memorizing dozens of formulas.  "Resampling statistics" techniques 
(simulation, bootstrap)  allow avoidance of calculus in the solution of many 
problems.  It is rare these days for a statistical practitioner to need a detailed 
knowledge of calculus in his/her work.  
 
3.8 Is it important to know how to use t-strategies to allow for variability in the 
estimation of standard deviations?  
 
 Not really.  The arbitrariness of the critical P-value suggests that 
computation of exact P-values is not necessary, as long as approximate ones are 
available.  In the case when the standard deviation of the population sampled is 
unknown, and the sample is too small to provide a reasonable estimate of the 
standard deviation, we are trained to use t-strategies.  But the normality of the 
population can never be checked with a small sample, and while it these t-
strategies are usually robust to non-normality, it is obvious that just a little 
contamination by genuine "outliers" can upset the apparent precision of the data, 
and subvert the t-strategy.  The clever devise invented by Gossett has its uses but it 
is not as generally useful as textbooks would suggest, especially given the 
additional complexity that it introduces to both instruction and practice.   
 
4. Glaring Omissions 
 
4.1 What are the most widely used techniques in real-world data analysis?  
 
 If one judges by the use of statistics in the media, graphical displays of time 
series, sample survey summaries, and bar charts would be most widely used.  If 
one considers industrial uses of statistics, one would have to add control charts.  
For retail outlets of all kinds, a record of the daily sales figures is almost always 
examined, and this is also a kind of time series.   
 
 When we teach basic statistics, we never talk about time series; we say very 
little about how to summarize survey questionnaires (e.g. how does one summarize 
a 10 question survey that has a five-scale response: DS, D, N, A, AS?); graphical 
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summaries, if they are discussed at all, are limited to histograms, stem-and-leaf 
plots, and scatter diagrams; and control charts are omitted entirely.  Why do we 
leave out the things that would be most useful?  
 
4.2 Which is the best way to convey a scientific result: 
i)  a parametric summary 
ii) a verbal summary 
iii) a graph ? 
How do we examine students' ability to do this?  
 
 Most textbooks emphasize i), but ii) and iii) are clearly better and more 
important.  A statistical analysis that stops at i) will not influence anyone.   
 
 Exam questions usually require a calculation of some sort.  But how many 
ask to explain a given result in words, or to suggest appropriate graphical displays?   
 
4.3 What is the first step in a data-based project?  What is the second step?  Do we 
teach  these steps?  
 
 Step 1:  Decide on the objective of the project, and write it down. 
 Step 2:  Collect the data 
 Step 3:  Check the data for anomalies 
 
 We don't usually teach these things in statistics courses.  Why not?  There 
are in fact things to be taught about each of these steps.   
 
4.4 Do students know what to do when comparisons are confused by a known 
confounding factor?  
 
 Simpson's paradox is a useful teaching tool, because it shows how extremely 
misleading an unaccounted-for confounding factor can be.  Of course, the point of 
this is not the paradox itself, but the fact that observational studies have special 
problems for the interpretation of comparisons, and that when data is available for 
suspected confounding factors, one must adjust the comparisons by removing 
statistically the influence of the confounding factor.  In the case of categorical 
variables (the context in which Simpson's paradox is usually portrayed) this means 
examining comparisons within each value of the confounding factor.  How often 
do we convey this important point in the context of comparisons from 
observational studies?  
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4.5 Do students know how to decide if a survey response percentage is high 
enough for valid inferences based on the sample alone?  
 
 This is a matter of judgment usually.  We must guess the extent to which the 
propensity to respond will be related to the response itself, for this is the thing that 
causes non-response bias.  Consultees who ask if 50 percent response is large 
enough to give reliable responses, are asking the wrong question.  Response bias 
can be serious with 90 percent response if the respondents are different enough 
from the nonrespondents.  (For example, consider the question: Have you ever 
committed a crime that, if you were caught, would have resulted in a jail sentence 
of at least one year?) 
 
 One other strategy that is sometimes relevant here is to use whatever 
information is available abut the non-respondents (address?) to compare the 
respondents and non-respondents.   
 
 Are students taught these important ideas?  Why not?  
 
4.6 Is it necessary for teachers of statistical theory to know how to apply the 
theory?  
 
 YES!  All students of statistical theory have to know how to apply the 
theory, even those who aspire to teach statistics in a university setting.  Teachers 
should be helping students to relate the theory to the practice of statistics and they 
cannot do this unless the teachers have actually done some application.   So much 
of the theory of statistics is only understood through the medium of applications 
that the full understanding of the theory from passive classroom experience is 
virtually impossible.   How can a student experience the reality that "all models are 
wrong" without having to choose a model to describe a particular phenomenon of 
interest?  
 
4.7 How should a first year service course in statistics differ from a first year 
course in statistics for statistics majors?  
 
 Not at all!  Statistics majors should take more statistics, not different 
statistics.  The first survey-style course in statistics should outline the field and hit 
the big ideas.  Most students at this stage are undecided about their specialty in any 
case, and we should assume that anyone is a candidate for a career in statistics.  
Even if only a few do choose this option, by giving a serious, but broad 
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introduction to statistics, all will be given a proper perspective about the subject, 
and there will be more people who can make good use of statistical experts.   
 
4.8 Do students of statistics know how to explain the rationale of statistical 
methods to non-statisticians?   Do they need to? 
 
 As was mentioned in an earlier section, a result from a statistical analysis 
that cannot be communicated in words or pictures will have little impact.  
Moreover, if we force students to verbalize their understanding of statistics, we 
will be helping them to relate the symbolic formulas to their general intelligence, 
instead of partitioning their brains into "stats" and "everything else".  
 
4.9 What statistical method has had the greatest impact on world economies?  Do 
we teach it in our basic course?  
 
 Reasonable candidates would be time series forecasting, quality control 
charts, and puplic opinion polls.  We should include these topics in our most 
elementary courses. 
 
4.10 Is data always numeric?  
 
 Statisticians tend to think that data must always be numeric, since all our 
formulas assume this is the case.  But we train many statisticians with probability 
models, even though we do not discuss how to relate these models to statistics 
problems.  One way to do this is to think of the observation of a phenomenon, like 
an epidemic outbreak,  an traffic bottleneck, or market fluctuations, as "data", and 
then our job as statisticians is to provide a simple explanation for the phenomenon.  
This would normally be done either algebraically or with a simulation if the system 
modeled is complex.  The charming field of applied probability modeling might be 
more popular if its utility as a statistical tool were more widely understood. 
 
 
5. Corrective Measures: 
 
5.1 Is there anything that a teacher can do to improve the impact of statistics 
courses when all the textbooks are so old-fashioned?  
 
 Use the textbooks for reference, but present statistical techniques as they 
arise naturally in a project-based course.  Projects can be discussed in class  before, 
during and after the time these same reports are submitted for marking.  
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5.2 How do students learn to approach problems when most of their training is 
technique-based?  How do students learn about the primary importance of data 
quality for interpretation of data? How do students learn to relate their verbal 
intelligence to their numeric and algebraic intelligence? 
 
See 5.1 above 
 
5.3 On what basis does a student express his or her pride in a familiarity with the 
discipline of statistics?  
 
 With guided experience with data-based projects, a student can learn about 
the pitfalls of a naive approach, and also how to conduct data-based studies 
efficiently.  Since this knowledge is applicable to many different fields, the student 
becomes broadly educated and is able to appreciate and communicate the key role 
of data-based research.  It can then be a source of pride since it would be 
recognized as important to almost everyone, like literacy and interpersonal skills.  
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