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Statistical software has made traditional statistical calculations accessible to almost anyone, but 
it has also stimulated new methods that are usually reserved for advanced courses. In this paper I 
argue for inclusion in the first course of non-parametric smoothing, density estimation, coplots, 
simulation, the bootstrap, time series forecasting, and plots of multivariate data. It is argued that 
the logic underlying these techniques is simpler and more useful than the logic underlying the 
inference usually included in first service courses in statistics. 
 
 Recent popular texts aimed at the first service course in statistics reflect the development 
high level statistical software.  Hand calculations are de-emphasized, large data sets are included, 
and graphical methods of analysis and display are given more prominence. (See for example, 
Moore and McCabe (1993), Freedman, Pisani and Purves(1998), and Wild and Seber(2000).  
However the frontiers of statistics have also been impacted by the advent of computing power, 
and some of these frontiers have produced very useful and conceptually simple methods. Because 
these methods have been developed by statistical researchers, they have tended to be reserved for 
senior undergraduate or graduate courses, along with more complex material. We discuss the 
merit and the feasibility of bringing the simpler methods into the first service course.  
 
1. NONPARAMETRIC SMOOTHING   
 The adjective "nonparametric" would be unnecessary except for the historical fact that 
statistical theory was mostly parametric. The parametric model was needed to simplify the 
communication of statistical results. Graphical methods were too time consuming to prepare for 
all but the smallest data sets. A simple regression analysis could be summarized by reporting an 
estimated intercept, slope, and residual standard deviation. However, the ease of graphical 
displays with statistical software has made parametric models less crucial. Consider the following 
example: gasoline mileage was recorded at every fill-up over a 33 month period, and the interest 
is to study the pattern over this period, to help in the assessment of future readings. The data was 
collected in Vancouver, Canada for a 1986 Mercedes 190E.  
 
The smooth curve (Fig. 1) which clearly shows the seasonal effect is generated by the lowess 
procedure in MINITAB, which is described in detail in Cleveland (1993). No clever use of 
sinusoidal functions or time series modeling is required. A smoothing parameter must be chosen 
but trial and error is an adequate approach - in this case the use of .1, .2, and .3 was enough to 
show that .2 was a reasonable choice to reveal the form of the anticipated seasonal effect.  

  
The details of the lowess procedure can be explained fully in a first course if desired, provided 
simple linear regression is included in the course - only the least squares fit of a line needs to be 
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Fig. 1 Loess Smooth of Gasoline Consumption Data



covered, not the inference associated with the regression. Then lowess can be described as the 
result of simple linear regression on each of a grid of values using the points  
close to the grid values.  The refinement of weighting the regression can be added once the basic 
idea is conveyed. The smoothing constant is the proportion of data values used for the fit at each 
grid point. The "smooth curve" is really a series of line segments joining the fits at the grid points.  
 The result of the lowess smoothing procedure can be conveyed graphically or in a table if 
numeric table if required. The lack of an explicit function might be a disadvantage in some 
applications - for example extrapolation. However, the time and expertise required to fit a 
parametric function to this data would have limited returns.  The lowess would already send the 
enterprising data analyst to sources of information on weather and traffic over the period, for a 
more detailed analysis.  
 The utility of a procedure like lowess should not be underestimated. Exploratory 
statistical methods are generally aimed detecting signals that are hidden by noisy data. Lowess 
does this is way that is applicable to a very wide range of situations - those in which a response is 
modeled as a function of an independent variable. It is logically as simple as simple linear 
regression, and very useful for anyone who has learned the basics of a statistical software 
package. It should be included in a first service course.  
 
2. DENSITY ESTIMATION   
 This is another technology steeped in higher mathematics that actually has a simple and 
useful aspect to it.  We spend too much time talking about how to construct histograms: number 
of bins, location of bins, and treatment of unequal bin sizes.  All these troublesome details 
disappear when one uses the approach of estimating frequency on a grid of values. As a first step, 
have students count the number of values within +- d of each of say, 20 grid points. Clearly the 
choice of d is similar to the choice of the smoothing constant except that its size is not limited to 
the range (0,1).  These counts are pseudo-frequencies that can easily be turned into relative 
frequency of even density if desired, but of course this last step will not change the shape of the 
graphical representation. A default value of d might be 1/15 of the range of values, or some 
convenient rounding of this value. Fig. 2 is the result of using this method for a set of 36 age-at-
death of the U.S. presidents.  
 

 
 Contrast this with the default histogram of the same data.  The histogram is neater, and 
easier to compute by hand, but the window approach used here is more revealing and no more 
effort when using a computer program.  Of course refinements are possible - for example, the 
rectangular window could be replaced by a triangular window, but the advantage does not seem 
worthwhile at the elementary level. This "windowgram" does not require any decisions to be 
made by the user.  Moreover, the logic of the windowgram is not much more difficult than the 
histogram - one just counts up the number of data values close to each grid point, and plots this 
on the vertical axis at the grid point.  There is only the slight complication of explaining the 
vertical scale so that the percents add to 100. The definition of "close" can be chosen by the 
student to observe its effect, or can be left to the software.  
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3. COPLOT  
 Cleveland (1993) describes coplots and shows them as very useful is analyzing more than 
two variables.  The first service course usually limits the discussion to two variables partly 
because of the complication of displaying phenomena in three or more variables, but also because 
of the conceptual complexity of fitting surfaces. The Coplot (short for Conditioning Plot) is a 
powerful technique for examining relationships among several variables, and for three variables is 
conceptually very simple. The basic idea is to present a sequence of scatter plots of two variables 
in which the third variable advances through its range.  This is particularly effective when 
combined with the lowess technique just described. Consider the following example which is 
based on the example in Cleveland's book.  The three variables in this example are a dependent 
variable Abrasion Loss and two independent variables, Tensile Strength and Hardness.  These 
measurements relate to the material loss in 30 specimens of rubber caused by a certain amount of 
rubbing of the specimens. The sequence of graphs (Fig. 3) reflects increasing hardness: from left 
to right, the graphs reflect the effect on the Abrasion Loss - Tensile Strength relationship as the 
Hardness increases.  More specifically, each graph shows the data associated with the 17 smallest 
values of hardness, 16 middling values, and the 16 highest values of hardness.  The three data sets 
overlap approximately 50 percent -  this overlap percentage determines the number of graphs. 
 

Fig. 3 Coplots of Abrasion Loss vs Tensile Strength Given Hardness 

 
The graphs reveal both a main effect of hardness on abrasion loss, and an interaction effect with 
tensile strength on abrasion loss. The coplots for abrasion loss on hardness for increasing tensile 
strength would show the interaction from another point of view. The information in these plots is 
not accessible from regression methods or  from other plotting methods such as spinning the 
three-dimensional data scatter.  An appreciation of scatter plots is all that is required to 
understand the coplot technique - the computer can work out the graphing details.  The addition 
of loess to the coplot is helpful but not an essential element of the coplot.  
 
4. SIMULATION   
 The role of simulation in helping to solve hard problems in both theoretical and applied 
statistics is well-known amongst statisticians, but many students never reach the courses in which 
it is used.  The idea of having a computer mimic randomness and inferring useful information 
about random phenomena can be conveyed in a simple context.  However, before computer 
simulations are used, a physical simulation needs to be demonstrated to ensure that students 
distinguish simulation from calculation.  
  Many instructors use simulation to demonstrate the relative stability of means. The 
details will be omitted here except to say that the same demonstrations are useful in a first service 
course.  Moreover, the idea of simulation itself is very important. It is a very general way to 
explore the consequences of randomness, and this is something that can be done without a 
background in mathematics, and without much experience with computing.   
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5. THE BOOTSTRAP  
 This technique was named and promoted by Efron (1979), and has become a very popular 
way to estimate variability of a statistic that would otherwise be intractable.  It appears in research 
papers and advanced courses, but the idea is quite simple and useful and could easily be added to 
an early statistics service course. It is important that students have been exposed to the idea of 
simulation for a painless introduction to  the bootstrap. The first example will illustrate how the 
technique might be used to introduce and explain the relative stability of averages, and the second 
example will show how it might be used to solve an intractable estimation problem in a real-data 
context.    
 
EXAMPLE 1  THE BOOTSTRAP APPROACH TO THE SEM 
 While students eventually internalize the idea embodied in the "standard error" formula 

!
x 
=
!

x

n
, initially there is usually quite a bit of confusion.   The simulation example 

mentioned in the previous section should help, but students may rightly ask "What if the 
population is completely unknown, and I am interested in something other than the mean, then 
how do I judge the accuracy of the sample information?"  The bootstrap provides a way to answer 
this.   
 Consider again the artificial population of integers {0,1,2,…,500). A random sample of 
size 25 from this population allows one to compute the sample mean.  For example,  
 
335    214     57     35    243     32    497    111    270     32    495  294    471    484    169    
163      9    389    267    147    204    463  29    205     21  
 
is such a sample and its mean is 225.4.  If the population were unknown we would estimate the 
population mean to be 225.4.  But can we assess the accuracy of this estimate based on the 
sample information alone?  
 One approach to suggest is to treat the sample as if it were the population, and take 
samples of size 25 with replacement from the original sample of size 25. For each of these 
samples, compute the new sample mean,  (rounded to an integer in this case), and from all the 
samples taken calculate the standard deviation of the sample means.  This standard deviation 
gives an idea of the precision of the original estimate, 225.4.  The result of 100 re-samples is that 
the sample mean has a standard deviation of 32.8.  This gives an answer to the question about the 
precision of the estimate 225.4. The estimate could be stated as 225.4 ± 33   Now compare this to 

the theoretical standard deviation of the sample mean = !x

n
 = 167.3

25
 = 33.4, and so with 

the standard theory behind us and the estimate of the population standard deviation = 167.3 we 
would report 225.4 ±  33.   However we computed this same precision without using the standard 
theory, but only the first principles approach of re-sampling.  The re-sampling method is not 
always exactly the same, and of course both methods are only estimates of the true accuracy 
based on the true standard deviation of this population, which is 28.9 or ±  29.   However re-
sampling gives  reasonable answers in practical situations, and is easy to use and explain.  
 This example shows that the bootstrap can give information  about variability of an 
estimate that is similar to that provided by standard sampling theory.  The next example shows 
the bootstrap at work when no standard sampling theory is available. 
 
EXAMPLE 2  BOOTSTRAPPING AN INTRACTABLE ESTIMATION PROBLEM. 
 The bootstrap method of computing the accuracy of a statistic applies to any statistic, no 
matter how complex.  Consider the following example:  From the following data set of height and 
weight of  25 men under 40 years of age, we have computed the so-called body mass index (BMI) 
which is = WGT

HGT
.  We want to estimate the value which would be greater than 90 

percent of the mean in this age group, as possible use for clinical evaluation of excessive weight.   
 The data for the BMI looks like this: 



 
  16.9   17.2   17.5   17.8   18.4   18.5   18.5  18.8   19.0  19.8   20.0   20.2   20.7   21.4  
  21.8   22.1   22.5   22.9   23.1   24.3   24.4   24.8   25.4   28.0   28.5  
 
And so the 90th percentile might be estimated as half-way between 25.4 and 28.0 or 26.7. A 
concern however is that the sample is too small to provide a reliable estimate of the 90th 
percentile, and so we estimate the precision of this estimate with the bootstrap.  The result of a 
thousand re-samples of the BMI data shows that the 90th percentile estimate we have used to 
arrive at 26.7 has a standard deviation of about 3.1.  This suggests our estimated 90th percentile 
could be easily be the 76th percentile up to the 99th percentile,  or even more in error, and so 
would be inadequate for clinical use.   The sampling theory of the 90th percentile is not simple, 
and neither is the appropriate model for the ratio we have used as the BMI, and yet we have been 
able to determine,  with the easily-explained bootstrap, the variability of our estimate for this 
particular sampling situation.   
 The point here is that we were able to assess the variability of the estimated parameter 
without knowing a parametric model for the data or any theory about the variability of 
percentiles.  All that was needed was the bootstrap technique. The bootstrap is another example of 
a simple technique that we could and should include in our early courses, particularly service 
courses.  
 
6. TIME SERIES FORECASTING 
 Time series methods are taught either as advanced mathematically-based statistics 
courses, involving ARIMA modeling or spectral theory, or as ad-hoc techniques specific to an 
financial or industrial forecasting. Undergraduate majors in business may be required to have 
some exposure to time series fitting and forecasting methods.  However, the need to understand 
time series data analysis is important in almost any field which uses data at all. Chemists, 
oceanographers, environmentalists, and even medical doctors need to know about the 
opportunities and hazards of using time series data.   
 A few textbooks aimed at the general first service course do include a chapter on time  
series (Weldon(1986), Griffiths et al (1998)) outlining elementary methods of smoothing, trend 
and seasonal extraction, residual examination, and forecasting, but many popular books do not 
(Moore and McCabe (1993), Freedman, Pisani and Purves(1998), and Wild and Seber(2000)). 
Suffice it to say here that the gas consumption data described earlier in this paper is an example 
of a time series for which the analysis using elementary techniques like lowess produces useful 
information. In fact, there is an interesting question with this data of where the seasonal minimum 
occurs, which in this particular case is crucial for producing a useful forecast of the next few time 
points. It turned out to be right after the last collected data value: the subsequent values of that 
time series were 5.7, 5.8, 5.7, 5.9, 6.3.  
   The treatment of time series as a topic that is supplementary to the mainstream gainsays 
its ubiquitous appearance in almost all data-based disciplines.  While advanced time series is 
beyond the grasp of those who do not have a solid mathematical background, there are many 
useful ideas that can be conveyed at the elementary level. 
 
7.  PLOTS OF MULTIVARIATE DATA 
 Once students get used to scatter diagrams, they realize their power in helping to analyze 
bivariate quantitative data.  At the same time, they will realize that many practical data sets will 
involve more than two quantitative variables.  While multivariate analysis has formidable 
mathematical problems associated with it, some very simple graphical strategies are possible to 
convey in a first course.  An obvious one is the profile plot.  Six body measurements on 25 men 
are displayed in the profile plot Fig 4. - the six variables are Age, Weight, Height, Neck, Chest 
and Abdomen.  



   
 

 
 The Profile plot is not a useful summary plot but is very useful for data analysis: 
detecting coherent subsets, outliers and correlations among several variables.   
 An even simpler method available for a small number of variables is to use an 
"augmented scatter plot".  The simplest example of this is to have a third variable X3 determine 
the size of the circular ring placed at (X1, X2). The Age, Weight, Height data looks like Fig 5. 
 Another primitive plotting method is the star plot, in which the profile lines are placed on 
spokes so that the profile plot looks a bit like a star. These starts must be placed in a sequence.  
There are various ways to make these plots more "viewer-friendly" such as choosing the order of 
the variables, and for the stars, choosing the order of the starts themselves, but these are optional 
enhancements.  
 Use of these plotting methods in an early service course may be one way to alert students 
to the very common multivariate nature of real-life data. Also, it gives an appropriate emphasis to 
graphical methods, which is surely one of the most popular methods of data analysis.  
 
CONCLUSION  
 Several methods that are very useful for practical data analysis have been proposed for 
addition to the first service course in statistics. It has been argued that these methods all have a 
simple conceptual basis, with very little prerequisite knowledge required. Given the extreme 
difficulty experienced by students to understand the standard methods of inference (Lipson 
(2000)), my suggestion is to replace some of the time spent on inference with time spent on these 
items of data analysis.  
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Fig. 4 Profile Plot of Six Body Measurements


