
STAT 100      Review Notes       April 13, 2010 
 
In addition to finishing a couple of topics from the April 8 lecture, we will cover as 
much as possible of the following in week 13.   
 
5. (Probability Models - 59 choices) Normal, Poisson, and Gamma Distribution 
Models, Density, Variability, Models, and application to Sports Leagues. 
 
5A. (Inserted April 7 – I missed this on the initial listing)  
(Industrial Issues – 37 choices) Six Sigma, Quality Control, Variability Reduction, 
Reliability, Cell Phone Fraud.   
 
6. (Smoothing - 31 choices) Moving Averages, Fuel Consumption, Survival Data, 
and Zipf's Law. 
 
7.  (Experiments and Observational Studies - 29 choices):  Random assignment, 
randomization, Simpson's Paradox, and applications School Choice, Turkey Mail, 
Memory Load, Clinical Trials, and one I forgot to list - Gilbert Murder Case. 
          
8.  (Sampling Surveys - 17 choices):  Political Opinion Polls, HIV study, 
Randomized Response, Veteran's Fund Raising, and Tiger Prey.  
 
9.  (Miscellaneous - 85 choices):  Various details including Decision Errors, 
Sampling with and without replacement, SD or proportions, .... 
 
Before I begin:  Note a headline in Saturday’s Vanc. Sun “The best forecast for 
the dollar is its current price”. It is about the cost of a Canadian dollar in US 
currency, and it is described as having a pattern like a random walk – no surprise 
to STAT 100 students … 
 
Probability Models 
 
I have reviewed the idea that simulating samples from a probability distribution is 
logically the same as selecting a random sample (with replacement) from a 
population.  (See Notes April 6, and April 8).  We have discussed several phenomena 
by using the N(0,1) distribution as our population, and more recently the Uniform 
Distribution on (0,1) and the Poisson Distribution.  In particular, we used the 
Normal “population” to produce data for the “theory of means” discussion even 
though it was not important to start with a Normal distribution. (To get away from 
the Normal population we used the uniform distribution on the integers {0,1,2,…9} 
to show that the theory still worked.) We used the Uniform Distribution to simulate 
a uniform spatial distribution of points on the unit square.  We used the Poisson 
distribution to predict the number of empty cells from a uniform spatial 
distribution.   
 



Another distribution that was “ad hoc” was the one that is uniform on {‐1,‐0.5,0,3}, 
and this was used to demonstrate the effect of diversification of risky investments.  
Yet another unnamed distribution was the one that was uniform on {‐1,+1}, and this 
was used to describe coin tosses and a symmetric random walk.  We also used a 
similar distribution – uniform on {Win, Lose} – to describe the outcome of a game 
between two teams of equal quality, in our simulation of sports league phenomena.  
 
Yet another model that was mentioned was the Gamma distribution. Not much 
detail about this was discussed – only that it was a model for a population that had a 
density that had skewed shape.  For example income distributions usually have a 
long right tail and so the Normal would not be appropriate, but the Gamma would 
be better in this application.  The Gamma was also used without much comment as a 
population from which samples were selected to generate a distribution of sample 
means, to show that the distribution of sample means was still approx normal.  
 
Density 
 
One important idea that needs review is the idea of a probability “density”.  That bell 
curve I refer to often is a “density”.  So is the rectangular picture of the uniform 
distribution.  To understand a “density” you need to realize that a density is a 
“function” – we usually write f(x) in mathematics for a function.  If f(x) is a density 
then it provides a value of f(x) for each value of x, and f(x) is proportional to the 
relative frequency of the value x.  The normal density is highest at its mean (0 in a 
standard normal) and falls off as x moves away from the mean.  I have discussed 
how the SD is related to the shape of the normal density:  the distance from the 
normal population mean to the point where f(x) changes its curvature, is 1SD.  (1 
unit for the standard normal).   
 
The density for a population that contains all values in the interval (0,1) equally 
often is called the uniform density.  Its f(x) is 0 when x is outside of (0,1) and equal 
to a constant value 1 inside that interval.  If you understand “density” this should 
make sense.  
 
Variability 
 
A theme throughout the course is the presence of “variability” in data.  This is one of 
those ideas that causes semantic problems.  If our data values in a random sample 
from {‐1,‐.5,0,3}  are (0,0,3,‐1,3,‐1,‐.5,0,‐.1,0), what do we mean when we say the 
sampling process produces variability in the sample? The numbers in the sample 
don’t move around once recorded!  What the word variability refers to in this 
context is the fact that the numbers in the sample are not all the same.  We measure 
“variability” in the sample, or in the population, by computing the SD in each case. In 
fact we use the SD of the sample as an estimate of the SD in the population.  In the 
sample shown it is 1.51, and in the population it is 1.80.  
 



In other words, variability describes the outcome of a sampling process, not the 
change in the numbers once sampled.   
 
This distinction is important in thinking about the sampling distribution of the 
sample mean.  Although we usually have a single mean from our sample with which 
to estimate the population mean, we still talk about how variable the sample mean 
might be.  It is the process of sampling that we are describing.  
 
Models 
 
Why do we need “models” like “Normal” and “Uniform” to describe populations, 
instead of just providing a list of population values.  There are two reasons I will 
mention here: 
 

i) Having easy ways to generate populations with known properties makes 
simulation very convenient, since simulation outcomes can be related to 
well‐known population characteristics. 

ii) Certain models are expected to occur in real data since the method of 
generating them leads to the model automatically (like normality of 
sample means, and Poisson distribution for uniform spatial scatter).  

 
 
5A. (Industrial Issues – 37 choices) Six Sigma, Quality Control, Variability 
Reduction, Reliability, Cell Phone Fraud.   
 
The words “Six Sigma” does not have any direct meaning in relation to the body 
of techniques that are implied by the modern use of the phrase. However, it is 
true that “Sigma” in statistics jargon is often used for the SD. As slight connection 
could be made by saying that the ±3SDs that include essentially all the “usual” 
data (in a normal distribution), but this is a stretch … 
 
So what is “Six Sigma”?  It is just a reasonable sequence of steps in solving 
industrial problems, especially those that involve data collection (and most 
problems do.) However, there are some useful techniques that help in this 
process:  fishbone chart, run chart, control chart, pareto chart.  You should know 
what these are and why they are useful.   
 
I elaborated on the control chart in earlier lecture (march 30). The use of this was 
that it simplified the signal for a floor manager in a manufacturing plant (or similar 
institution) that something needed re-examination in order to eliminate sources of 
variation:  management by exception.  
 
Why is it important to eliminate sources of variation?  A manufacturer can produce 
just what the product specifies and not more nor less – this is the condition for 
maximum profitability.  See the March 30 lecture notes for more on this.  



 
The washing machine reliability article (pp 339ff) and the cell phone fraud article 
(pp 293ff) both described industrial problems involving variability.   The strategy in 
the washing machine article was to do an experiment involving accelerated testing 
to discover the source of reliability problems, and eliminate them so that sales could 
be increased.  In the case of cell phones, variation was used to signal fraudulent use 
of a cell phone, and clearly elimination of this source of variation would also 
increase profits.  
 
 
6. (Smoothing - 31 choices) Moving Averages, Fuel Consumption, Survival Data, 
and Zipf's Law. 
 
Smoothing 
 
This topic was partially reviewed already in the April 8 lecture, in connection with 
the description of dependence of time series. See those notes concerning 
“moving averages”. Also, recall the following graph. 
 

 
 
In the case of “Fuel Consumption” I did not use the moving average method for 
the smoothing, since it does not work well for high order moving averages – it 
chops off the beginning and end of the series.  I used a method called “loess” 
which is outside of this course.  Nevertheless, I can demonstrate how the moving 
average would work on that fuel consumption data.   
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So even the simple moving average (order 25 here) produces the regular 
sinusoidal pattern in phase with the annual season.  With this large data set, the 
loss of the end points did not matter much (sometimes a problem with the moving 
average smoothing method.) 
 
Other applications of smoothing:  Survival Data (Car Accidents) and Zipf’s Law 
(City Populations). 
 
We used a straight line as a very rough smoothing of the survival data.  As 
pointed out in the assignment, the straight line was not a very good model since it 
had to fail at the upper end (since the probability of having an accident for a 
certain exposure cannot be greater than 1). But the model was useful anyway.  
 
The Zipf’s Law graph showed that the rank of the city population multiplied by the 
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population itself was fairly constant, at least for Canada and the US.  But it was 
not exactly constant.  Again, the approximate model was useful for description 
and comparison, even though not quite right.  We can think of the imposition of 
the straight line on the product values as a smoothing.  
 
 
7.  (Experiments and Observational Studies - 29 choices):  Random assignment, 
randomization, Simpson's Paradox, and applications School Choice, Turkey Mail, 
Memory Load, Clinical Trials, and one I forgot to list - Gilbert Murder Case. 
 
Experiments and Observational Studies 
 
By now, I hope everyone knows the difference between an experiment and an 
observational study, and why that is a useful distinction:  in an experiment the 
investigator assigns the treatment to be compared to the subjects (or 
experimental units) while in an observational study, the characteristic that defines 
the comparison groups is a characteristic of the subjects (or study units). The 
reason it is important is that only in an experiment is a direct inference of 
causality possible (the characteristic as a cause of the outcome), since in an 
observational study the characteristic of comparison might be associated with the 
real cause but not itself be the real cause.   
 
For example, a study of people with high blood cholesterol to be compared with a 
group with low blood cholesterol might be assessed for subsequent heart 
problems, but even if the correlation seems solid, the likely inference that the 
cholesterol was the cause might be wrong since the high cholesterol itself might 
be associated with a high pressure job and the job stress might be the direct 
cause of the heart problems as well as the high cholesterol.  Another group with 
high cholesterol but a low pressure job might have no such risk of heart 
problems.  In this example, the job stress is a “lurking” that the investigator did 
not measure, but should have for a more useful analysis.  And there could be 
many such variables – an observational study can never have comparison 
groups balanced with respect to all possible causes.  On the other hand, an 
experiment in which the comparison groups have been randomly assigned are 
balanced (in a statistical sense) with respect to all “lurking” variables, and these 
alternative explanations of outcome differences of the comparison groups are not 
tenable.  
 
The web site I referred you to about Simpson’s Paradox is a very interesting 
and clear explanation.  Simpson’s paradox is just an illustration of how 
misleading an observational study can be, and a suggestion of how to minimize 
the likelihood of being misled.  
 
The applications listed in the intro to this review section all involve expt vs obs 



study issues. 
 
School Choice (pp69 ff):  Applicants were assigned at random to public/private 
schools 
Turkey Mail (pp 373ff): Subjects and Day-of-Week were assigned at random to 
the emails. 
Memory Load(pp 211ff):  Subjects were assigned to the various orders of 
memory load sequences 
Clinical Trials(Mar 4 notes and pp227 ff):  Subjects are assigned at random to the 
treatment groups 
Gilbert Murder Case (pp 3ff):  an observational study in which randomness was 
rejected as an explanation of the prevalence of deaths on Gilbert’s shifts, but 
Gilbert’s guilt was still not proven by this result.  
          
8.  (Sampling Surveys - 17 choices):  Political Opinion Polls, HIV study, 
Randomized Response, Veteran's Fund Raising, and Tiger Prey.  
 
Sampling Surveys 
 
Our discussion of Political Opinion Polls assumed a simplified scenario of basing 
preference for a Candidate on a simple random sample.  The usual population 
sampled was assumed to be very large relative to the sample size, and the 
correction factor for estimating the SD of the finite population was so close to 1 
that we could ignore it.  
 
We showed by formula that once the population was more than about 20 times 
the sample size, the correction factor for sampling without replacement could be 
ignored, if for a finite population.  
 
The difficulty of taking a simple random sample in the Canadian population was 
mentioned, since the list of all eligible voters was hard to access well before an 
election. Usually the sample in a political opinion poll involves random selection 
but is not a simple random sample.  A similar difficulty arose in the HIV study – 
instead of sampling the target population directly, a list of venues was 
constructed and the venues were selected randomly – this worked since 
adjustments to the data gathered were made for the relative size of each venue.  
 
The tiger prey “survey” was a quite different problem for researchers. Here they 
were simply trying to count deer in an area of known size, in order to estimated 
density and hence abundance.  The problem was that the deer were very hard to 
find, not because they were rare, but just because they avoided being seen.  The 
clue was the footprint data. However, the article describes how expert training 
was necessary to estimate density directly from footprints entering and leaving a 
certain area.  The article shows that a simpler method requiring less expert 



training was to count footprints crossing a certain linear path. Then the 
correlation between the linear density and the areal density could be used to 
estimate the real target which was the areal density. Regression was used for 
this. (Straight line regression only works when there is a straight line correlation, 
and the ordinary correlation coefficient is actually measuring the closeness of 
points to a straight line.) 
 
The Veteran’s Fund Raising study was a survey done serendipidously (data 
mining article p 307ff) as the previous year’s fund raising event.  Information was 
available on the last year’s mailing list along with the response consequences of 
it. The sample examined was not a random sample – it included everyone on the 
mailing list.  But the response certainly involved some randomness.   
 
The last topic under this heading that students wanted a bit more about was the 
randomized response survey.  This was just the simple use of probability to find 
out, in a non-confidential way, information from students that would usually be 
considered confidential.  The method tries to ensure students that their response 
will not reveal their actual answer to the sensitive question, since most students 
answering the question in the affirmative will be answering a non-sensitive 
question (Did you toss a head?).  Again, the randomness did not come from 
random selection, since the entire class present was questioned, but rather from 
the subsequent coin toss.   
 
9.  (Miscellaneous - 85 choices):  Various details including Decision Errors, 
Sampling with and without replacement, SD or proportions, .... 
 
I’ll just reiterate a couple of things in this Miscellaneous Category. 
 
Decision Errors 
 
In many situations in which decisions are made on the basis of observed data, 
there is correct decision and an incorrect decision.  Often these two decisions are 
made in each of two “states of nature”: e.g. email was spam, or email was not 
spam.  So there are four situations in each decision: 
 
State of nature  Decide it is SPAM  Decide it is not SPAM 
 Spam   1      2 
 
 Not Spam   3      4 
 
In situations 1 and 4, the decision is correct, but in situations 2, and 3, it is not 
correct.  We sometimes refer to 3. As a False Positive, and 2. as a False 
Negative, especially when the decision is about the presence of disease.  
Statistics jargon also uses the unhelpful terminology “type I error” and “type II 



error”, but I have avoided this jargon in STAT 100.  
 
SD of Proportions 
 
The SD of sample proportions can be computed like any other SD, as long as the 
items to be analyzed are coded as 0s and 1s.  So  if the class consists of 
students {M,F,F,M,M,F,M,F,F,…,M,F} then to compute the proportion of Males, I 
would rewrite the data as {1,0,0,1,1,0,1,0,1,1,…,1,0} and then the proportion of 
Males would just be the proportion of 1s in the recoded data.  So we might have 
the proportion of 1s as 56/140 = 0.40.  But if we consider this class to be a 
random sample of SFU students (probably a bad assumption but we will do it 
anyway for illustrative purposes), then we realize that the sample proportion 
based on this class could have different with a different class, and we would like 
to know how close to the true proportion of males in our sample is to the same 
proportion in the SFU population.  Suppose this SFU proportion is “p”.  We do not 
know p but we have our estimate of it 

€ 

ˆ p =0.40.   
 
What we need is the variability of 

€ 

ˆ p  .  Can we estimate that?  Noting that 

€ 

ˆ p  is an 
average based on a sample of size 140, we actually do know how to estimate its 
variability:  SD of population / √sample size.   
 
What is the SD of the population?  It can be shown that the ordinary formula for 
SD on the 0-1 data turns out to be 

€ 

p(1− p) , where p is the proportion of 1s in 
the population sampled.  But as I said before, we don’t know p, but we do know 
the estimate of it, 

€ 

ˆ p =0.40.  So we can estimate the variability of 

€ 

ˆ p  by  
 
Est of SD of population / √sample size  =  

€ 

ˆ p (1− ˆ p ) /√sample size =  

€ 

.40(1− .40) /√140 =0.041. 
 
So a typical error in estimating p from our sample of 140 is about .041, since 
0.041 is the estimated SD of 

€ 

ˆ p . 
 
We could say that an interval estimate of p is 0.40±.082, we would be correct, in 
the sense that the true SFU value would be in this interval, 95% of the time we 
use this method.  
 
See the list of topics included in the final exam – posted on the STAT 100web 
page. 
 
End of Course!   
I wish everyone success on the final exam, and that in your careers you will look 
back at this course as having taught you something useful and interesting.  
         KLW 2010/04/13 


