Before we get into the analysis of the accident data collected last week, I draw your attention to an article in today's Vancouver Sun.

Do these approximately straight lines reflect a constant hazard per year? About 0.6%,1.0% or 1.6% for the three survival curves?

Here is the result of the analysis of those little slips of paper. There were only 44 submissions – too bad so few were at this class. Nevertheless, the analysis worked out fairly well.

First, here is the data with the exposure grouped into 12 month periods.

> exposure (months)
[1] 6 18 30 42 54 66 78 90 102 114
[11] 126 138 150 162 174 186
> count (number of students)
[1] 7 3 6 2 5 3 2 4 2 1 5 0 0 2 1 1
> accidents (number answering Yes)
[1] 0 1 3 0 1 1 0 2 0 1 3 0 0 2 1 1
> a.over.c (proportion with Yes)
[1] 0,33,5,0,2,33,0,5,0,1,6,NA,NA,1,1,1

The plot of this data is:

Accident Free Probability Estimates by Month of Exposure

We can smooth the relationship taking account of the numbers in each estimate.

Smoothed Probability Estimates for Accidents

Note that a reasonable approximation would be to say that the probability increases from 0 to 1 over about 180 months, so the slope of the approximating line would be about 1/180 = 0.055 or a bit more than 1/2 of 1 percent.

In other words, the chance that any particular student will be involved in an accident next month is about 1 in 180 or a bit more than $\frac{1}{2}$ of 1 percent.