Attempt all the questions. You have 50 minutes to earn 50 marks. Leave numerical answers in fractional or unevaluated form if easier.

1. (15 marks) Discrete random variables X and Y have the following joint distribution:
$\mathrm{P}(\mathrm{X}=1, \mathrm{Y}=1)=.1$
$\mathrm{P}(\mathrm{X}=1, \mathrm{Y}=2)=.2$
$\mathrm{P}(\mathrm{X}=1, \mathrm{Y}=3)=.1$
$\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=1)=.2$
$\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=2)=.3$
$\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=3)=.1$
a) Are X and Y independent? Explain or justify.
b) Compute $\mathrm{E}(\mathrm{X} \mid \mathrm{Y}=1)$
c) Compute $\mathrm{E}(\mathrm{X})$
1.Ans. a) No because $P(Y=i \mid X=1)$ is not $=P(Y=i \mid X=2) i=1,2,3$.
b) $1^{*} \cdot 1 / \cdot 3+2^{*} \cdot 2 / \cdot 3=5 / 3$
c) $1 . *(.1+.2+.1)+2 *(.2+.3+.1)=1.6$
2. (10 marks) Two coins have $\mathrm{P}(\mathrm{Head})=.4$ and $\mathrm{P}(\mathrm{Head})=.6$ respectively. One of these coins is selected at random and tossed 5 times, and the outcome is 5 heads. What is the probability that the coin with $\mathrm{P}(\mathrm{Head})=.6$ was selected?
2.Ans Let C be the event that the $\mathrm{P}(\mathrm{Head})=.6$ coin is selected.
$\mathrm{P}(\mathrm{C} \mid 5$ heads $)=\mathrm{P}(5$ heads $\mid \mathrm{C}) \mathrm{P}(\mathrm{C}) / \mathrm{P}(5$ heads $)$

$$
=.6^{5}(1 / 2) /\left[.6^{5}(1 / 2)+.4^{5}(1 / 2)\right]=1 /\left(1+(2 / 3)^{5}\right)=.88 \text { approx. }
$$

3. (15 marks) Let $X_{1}, X_{2}, X_{3}, \ldots . X_{n}$, be IID random variables such that $P\left(X_{i}=a\right)=p$ and $P\left(X_{i}=-a\right)=1-p$. Let $S(n, a, p)=\sum^{n} X_{i}$.
a) Find the mean and variance of $S(n, a, p)$
b) Find $\mathrm{P}[\mathrm{S}(5,1,0.5)=3]$
4. Ans. a) X_{i} has mean (pa+(1-p)(-a))=2pa-a and variance
$\left[(a-2 p a+a)^{2} p+(-a-2 p a+a)^{2}(1-p)\right]=4 a^{2} p(1-p)$
So mean of $S(n, a, p)=n(2 p a-a)$ and var of $S(n, a, p)=n\left[4 a^{2} p(1-p)\right]$
b) This symmetric random walk of 5 steps is 3 iff $\operatorname{Bin}(5,1 / 2)$ has 4 forward steps in 5 which has probability $5 \mathrm{C} 4 *(1 / 2)^{5}=5 / 32$
5. (10 marks) A manufacturing process produces CDs that are either $\mathrm{OK}(\mathrm{O})$, fixable(F), or unfixable(U). One CD is selected from each of 10 batches and inspected. The sequence of outcomes is noted as the batches are sampled, and a sequence like O OF U OOFOOO is observed.
a) How many distinguishable sequences will have $1 \mathrm{U}, 2 \mathrm{Fs}$ and 7 Os?
b) If $\mathrm{P}(\mathrm{U})=.1$ and $\mathrm{P}(\mathrm{F})=.2$ and $\mathrm{P}(\mathrm{O})=.7$, what is the probability of $1 \mathrm{U}, 2 \mathrm{Fs}$ and 7 Os ?
4.Ans.
a) $10!/(2!7!)=360$
b) $360 * .1^{*} \cdot 2^{2 *} .7^{7}=.12$ approx
