Here are the data that I displayed graphically in class:

	CANp	CANn	USp	USn	NZp	NZn	OZp	OZn
1	4.5	Tor	8.1	NY	1.29	AUC	4.3	Syd
2	3.3	Mtl	3.8	LA	0.39	WEL	3.8	Mel
3	1.8	Van	2.8	CHI	0.38	CHR	1.9	Bri
4	1.1	Ott	2	HOU	0.16	HAM	1.6	Per
5	1	Cal	1.5	PHI	0.11	DUN	1.2	Ade
6	0.9	Edm	1.26	SA	0.11	TAU	0.58	Gld
7	0.7	Que	1.26	SD	0.08	PAL	0.52	New
8	0.6	Win	1.21	DAL	0.065	HAS	0.38	Can
9	0.6	Ham	0.9	SJ	0.058	NEL	0.28	Wol
10	0.5	Lon	0.9	DET	0.055	NAP	0.23	Sun

The graphs:

Populations of 10 largest cities

Populations of 10 largest cities

Populations of 10 largest cities

Populations of 10 largest cities

The point to keep in mind about Zipf's Law is that a model does not have to be right to be useful. The fact that the model (based on the constancy of rank x size) works for North America but not for NZ and OZ suggests that there is something a geographer would like to understand about differences in urbanization in the two regions – and also, the model provides a numerical description of what the difference is.

Another point is that rank is sometimes a useful variable to compare with a quantitative variable.