

Knowledge Visualisation

IAT814

Week 1 Lecture 1

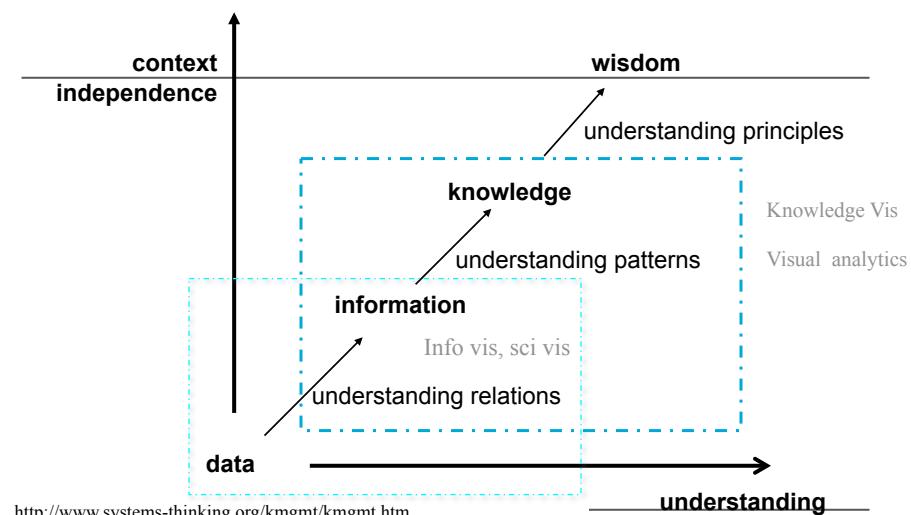
6.09.2007

Lyn Bartram
lyn@sfu.ca

Welcome to IAT 814:

- Should be better termed “Visualization: Perception and Design” but we have what we have
- What this course is about ...
- Course logistics
 - Evaluation
 - Location
 - Resources

Visualisation | IAT814 | SEPT 6. 2007


What is visualisation?

- The formation of mental visual images
- The act or process of interpreting in visual terms or putting into visual form
- A tool or method for generating images from complex multidimensional data fed into a computational processor

Visualisation | IAT814 | SEPT 6. 2007

Visualization - from data to wisdom

Advantages of visualisation

- Comprehend huge amounts of data
- Emergent properties and relations
- Detect problems and inconsistencies in data
- Facilitates understanding of large- and small-scale features of the data
- Facilitates hypothesis formation: the forming of new questions and insights

Visualisation | IAT814 | SEPT 6. 2007

What is visualization(take 2)?

- Solve problems by finding patterns in graphical displays of data
- Thinking with visualization involves:
 - Constructing visualization queries on displays
 - Visual search strategies through eye movements and attention to relevant patterns
 - Visual notification and attention “redirection” to new patterns and events

Visualisation | IAT814 | SEPT 6. 2007

- When it's done well

Visualisation | IAT814 | SEPT 6. 2007

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

The Real Problem

“What information consumes is rather obvious: it consumes the attention of its recipients. Hence a wealth of information creates a poverty of attention, and a need to allocate that attention efficiently among the overabundance of information sources that might consume it.”

~Herb Simon
(Nobel Prize Winner)
as quoted by Hal Varian
Scientific American 9/1995

Foundation for a science of data visualization

- What are the advantages of visualising data?
- What do we need to understand about how to exploit those advantages?

Figure 1.1 Passamaquoddy Bay visualization. Data courtesy of the Canadian Hydrographic Service.

Visualisation | IAT814 | SEPT 6. 2007

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Essential issues

- What mental models most effectively carry various kinds of informations ?
- Which definable and recognizable visual attributes of these models are most useful for conveying specific information either independently or in conjunction with other attributes ?
- How can we most effectively induce chosen mental models in the mind of an observer ?
- How can we provide guidance on choosing appropriate models and their attributes to a human or automated display designer ?

----- G. Robertson

- Progress in [scientific] visualization can be accelerated if workers could more readily find visualization techniques relevant to a given problem

---Wehrend and Lewis

Visualisation | IAT814 | SEPT 6. 2007

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Essential issues

- What mental models most effectively carry various kinds of informations ?
- **Which definable and recognizable visual attributes of these models are most useful for conveying specific information either independently or in conjunction with other attributes ?**
- How can we most effectively induce chosen mental models in the mind of an observer ?
- **How can we provide guidance on choosing appropriate models and their attributes to a human or automated display designer ?**

----- G. Robertson

- Progress in [scientific] visualization can be accelerated if workers could more readily find visualization techniques relevant to a given problem

--Wehrend and Lewis

Visualisation | IAT814 | SEPT 6. 2007

Why Should We Be Interested In Perception and Visualisation?

- High bandwidth to the brain (70% of all receptors ,40+% of cortex, 4 billion neurons)
- We can see much more than we can mentally image
- We can perceive patterns (what dimensionality?)

Visualisation | IAT814 | SEPT 6. 2007

Visualization based on science – not recognition of arbitrary symbols

- Semiotics of graphics: Bertin, Saussure
- Is it about learning the significance of arbitrary diagrams and the craft of designing visual languages?
- No – the perceptual system is predisposed through both its inherent structure and development to be sensitive to certain features
- What can vision research teach us?
 - Understanding of perceptual mechanisms is fundamental to a science of visualisation
- Experimental semiotics

Visualisation | IAT814 | SEPT 6. 2007

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

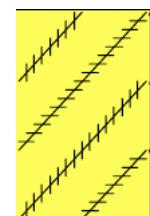
Sensory vs. Arbitrary Symbols

- Sensory:
 - You can see and understand without training.
 - Match the way our brains are wired
 - Object shape, color, texture
- Arbitrary:
 - Must be learned
 - Having no perceptual basis
 - The word “dog”

Visualisation | IAT814 | SEPT 6. 2007

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Properties of Arbitrary Representations


- Formally powerful
- Capable of rapid change
- May already be learned (summation notation)
- Dangers
 - Can be hard to learn
 - Can be easy to forget
 - May vary with culture and application (different disciplines use different symbols or codes for the same concept and the same symbol for different concepts)

Visualisation | IAT814 | SEPT 6. 2007

Properties of Sensory Representations

- Can be understood without training
- Resistant to instructional bias
- Is processed very quickly, and in parallel
- Is valid across cultures
- Danger: Poor mappings can be misunderstood, quickly and without effort, even with instruction and training.

Visualisation | IAT814 | SEPT 6. 2007

A psychology of visualization

- Sensory symbols
 - “symbols and aspects of visualisations that derive their expressive power from their ability to use the perceptual power of the brain without learning”.
- Can't be unlearned or ignored
- Immediate processing
- Cross-cultural validity
- Empirically testable (ha!)

Visualisation | IAT814 | SEPT 6. 2007

Course organisation

- Course organization *mostly* follows the text
- Parallel processing to extract low level properties of a scene – Ch 1, 2, 3, 4 and 5
- Pattern perception – Ch 5, 6, 7, 8
- Sequential goal directed processing – Ch 9, 10, 11
- Course outline, week by week, will be on the website with slides

Visualisation | IAT814 | SEPT 6. 2007

And thus ... the course outline

1. Foundation for a science of visualization and introduction
2. An introduction to the human visual systems and displays
3. Optics, Display and Contrasts
4. Colour theory and colour for information display
5. Visual attention and things that pop out
6. Patterns for visualizing structure
7. Motion-based patterns
8. Objects and object-based displays
9. 3D space perception, Stereo and 3D display
10. Images, words and gestures/motion and movement
11. Tools for visualizing multidimensional data
12. No class - individual project meetings
13. Interacting and Thinking with Visualizations

Visualisation | IAT814 | SEPT 6. 2007

Class structure

- 3 hour lectures (give or take)
- First half: 1 lecture on topic of the week
- Second half : student presentations and discussion

Visualisation | IAT814 | SEPT 6. 2007

Course Evaluation

- 3 components:

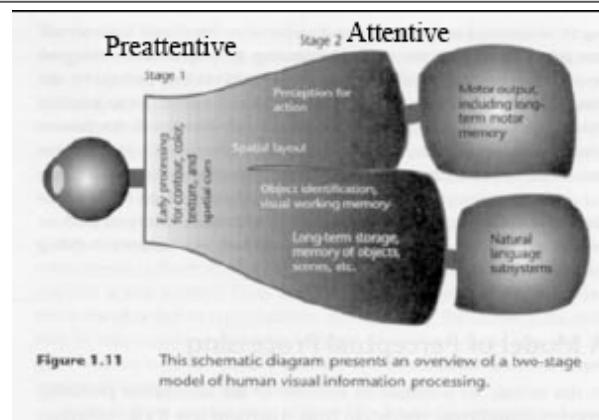
1. 2 Visualisation critiques (20%, 10% each)
 - Part 1. Find an example of practice, critique and present
 - Part 2. Discuss from perceptual perspective!
 - We will revisit these.
2. Research critique (20%) -
 - critical review of recent research, presentation and report
3. Final project (60%)
 - Group or individual
 - Research paper
 - Design proposal of technique or method to address a visualization challenge
 - presentation

Visualisation | IAT814 | SEPT 6. 2007

Resources

- Course textbook:
 - Colin Ware. *Information Visualisation: Perception for Design*.
- Course web/wiki site
 - <https://wiki.sfu.ca/spring09/iat814g100/>

Visualisation | IAT814 | SEPT 6. 2007


Stages of visualization

- Collect the data (lab work, simulation, archives,
- Transform the data
 - Into a format readable and manipulable by the visualisation software
 - Into the form most likely to reveal information (we'll return to this)
- Visualisation algorithms and computational treatments run on graphics hardware or software renderers (the computational machinery)
- Human views and interacts with the visualisation
 - Changes parameters, techniques, view options
- User studies to evaluate effectiveness
 - This often doesn't happen!

Visualisation | IAT814 | SEPT 6. 2007

Two-stage model of perceptual processing

Visualisation | IAT814 | SEPT 6. 2007

What makes/is a good visualisation?

- Understanding means making a model that captures the essence of a system
- A model is an abstraction with the *important things in* and the *unimportant out*
- *Different visualizations* provide different levels of detail, show and hide different things; so *support different abstractions*
- Good visualizations are those that are *useful* to aid understanding, not just *realistic* representations (what color is a carbon atom?)
- Good visualizations map the important part of the tasks onto techniques that show the relevant characteristics best

Visualisation | IAT814 | SEPT 6. 2007

Data characteristics and visualisation goals

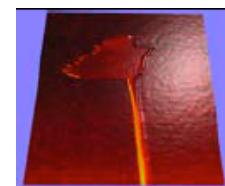
- Why classify data and visualisation goals?
 - No known silver bullet
 - Helps select what technique(s) to try
 - Helps predict other uses for good techniques
 - Some tools and approaches only work with some formats

Visualisation | IAT814 | SEPT 6. 2007

Data characteristics

- Dimensionality
 - Number of data sets
 - Space/subspace for each (Scalar/vector field)
 - Visualization space where the data is embedded
 - Type of each value field
- Nominal, ordinal, interval, ration
- Other
 - Continuous vs. discrete
 - Spatial frequency
 - Missing or special values?
- Structure of the sampling

Visualisation | IAT814 | SEPT 6. 2007



SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Dimensionality

- Of the space in which the fields are embedded (2D/3D)
- Of each data field (point, line, surface, volume)
- Of the data type in each field

Visualisation | IAT814 | SEPT 6. 2007

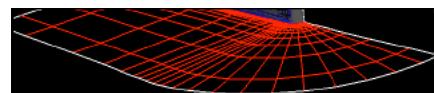
SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Types of values

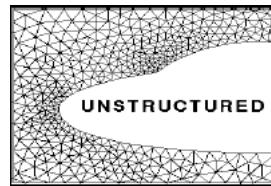
- Nominal: names without ordering
 - Continents: Africa, America, Asia, Australia, Europe
- Ordinal: Less than relationship holds
 - Rental cars: Economy, Compact, Mid-sized, Full-sized
- Interval: Relative measurements, no absolute zero
- Height of AFM scan or location
- Ratio: Absolute zero (can say “twice as much as”)
 - Account balance, Height above sea level, *not* height

Visualisation | IAT814 | SEPT 6. 2007

Data characteristics cont

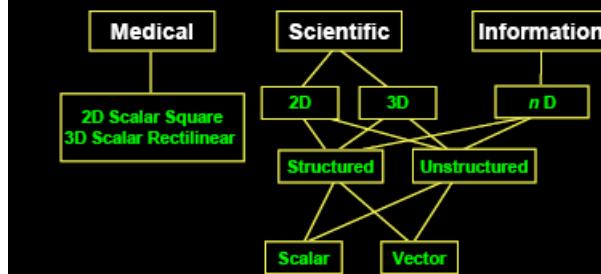

- Continuous/discrete
 - Sampling of the field
 - Values in each sample
- Spatial/temporal frequencies on data
- Missing values
 - Interpolate
 - Show as missing explicitly?
 - Ignore?
- Special values
 - Of particular interest to visualize
 - Thresholds, ratio scales (consider sea level relative values)

Visualisation | IAT814 | SEPT 6. 2007



The sampling grid

- Structured
- Rectilinear
- Curvature


- Unstructured
- Point clouds
- tetrahedral

Visualisation | IAT814 | SEPT 6. 2007

Visualization Problems vs. Data Types

Visualisation | IAT814 | SEPT 6. 2007

Task analysis

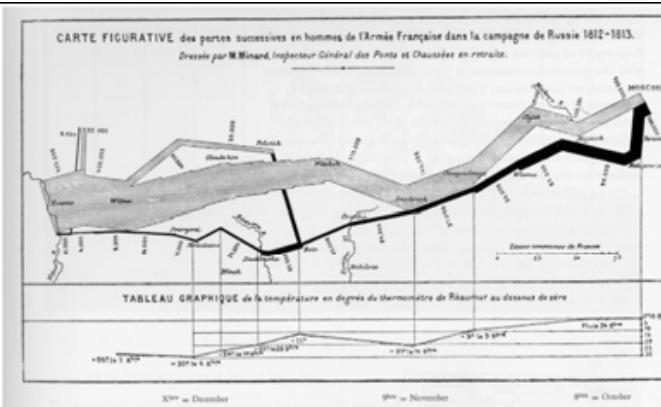
- High level goals - middle level tasks -- atomic actions
- Determine tasks before determining visual representations and interaction tools
- Tasks too often determined informally or implicitly
- Each representation may serve one high level goal
 - Class of representations more likely

Visualisation | IAT814 | SEPT 6. 2007

Visualisation Goals

- Debugging
 - Quality control of simulations, measurements
- Exploration
 - Gaining new (unexpected, profound) insights
 - Increasing scientific productivity
 - Making invisible visible
- Presentation
 - Enhancing understanding of concepts and processes
 - Visual medium of communication
- Others?

Visualisation | IAT814 | SEPT 6. 2007


Exploration tasks

- Identify and distinguish objects
 - Categorise objects
- Compare values
 - Discover extremes and distributions (qualitative)
 - Look up values (quantitative)
- Recognise patterns/structure
 - Identify clusters
 - Discover phases
 - Correlations between data sets
 - “what’s going on here”?

specialized

general

Visualisation | IAT814 | SEPT 6. 2007

- Tufte. The Visual Display of Quantitative Information. p41

Visualisation | IAT814 | SEPT 6. 2007

Consider the whole

- An interactive visualisation is more than a single technique
- Interplay between techniques
 - 3D colour-mapped objects?
 - Don't vary lightness
- Multiple variables?
 - Map to different perceptual channels
- Integrated vs. separate
 - May separate in space (parallel presentation)
 - In time (animation, user switches)
- Combine if you can effectively

Visualisation | IAT814 | SEPT 6. 2007

Consider whole vis example 1

08/27, Data Characteristics

UNC-Ch Comp 290/069, Kuss Taylor, Fall '02

Slide 30

Visualisation | IAT814 | SEPT 6. 2007

Summary

- Data Characteristics
- For each technique, consider what dimensions and types of data it can support
- For each visualization, consider the best space to display it in
- Consider spatial frequency and missing values
- Visualization Goals
- Consider what tasks need to be done to achieve the visualization goals
- Consider what tasks are to be achieved, and which techniques are well suited for each

Visualisation | IAT814 | SEPT 6. 2007

