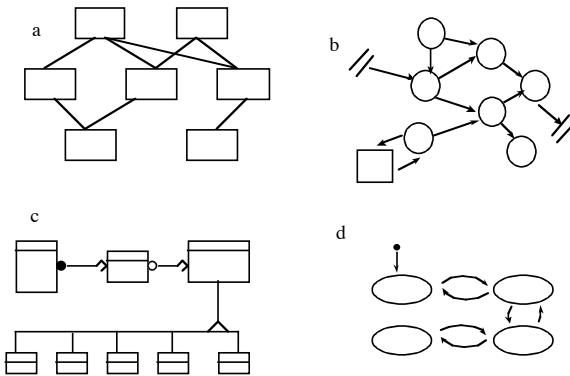


Static and Moving Patterns

Lyn Bartram
IAT 814 week 7
18.10.2007

Pattern learning


- People who work with visualizations must learn the skill of seeing patterns in data.
- In terms of making visualizations that contain easily identified patterns, one strategy is to rely on pattern-finding skills that are common to everyone.
- Good idea to use *priming* to enhance perceptual receptivity

Static and Moving Patterns | IAT814 | 18.02.2009

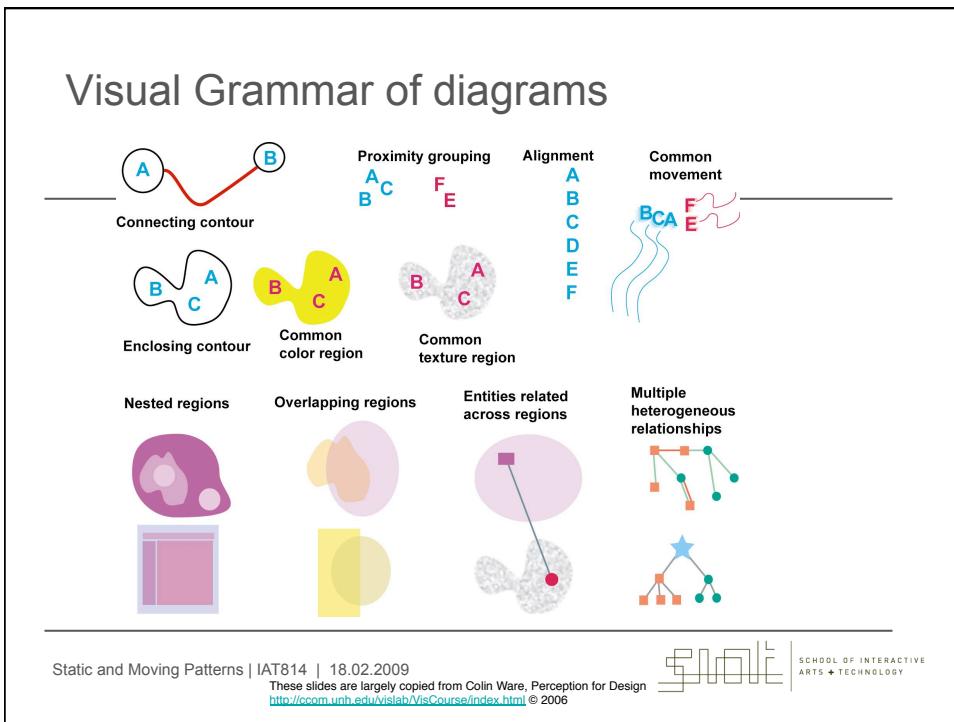
Patterns in Diagrams

- Patterns applied to node-link diagrams

— These slides are largely copied from Colin Ware, Perception for Design
<http://com.uth.edu/~vislab/VisCourse/index.html> © 2006

Static and Moving Patterns | IAT814 | 18.02.2009

Node-link diagrams


- Most common way of showing relation
- Node == entity, object
 - Closed contour
- Link == relation
- Visual grammar has a perceptual basis for how it conveys meaning

Static and Moving Patterns | IAT814 | 18.02.2009

- Visual grammar for node-link diagrams
- Static patterns

Graphical Code	Visual Instantiation	Semantics
1. Closed contour.		Entity, object, node.
2. Shape of closed region.		Entity type.
3. Color of enclosed region.		Entity type.
4. Size of enclosed region.		Entity value. Larger = more.
5. Partitioning lines within enclosed region.		Entity partitions are created, e.g., TreeMaps.
6. Attached shapes.		Attached entities. Part-of relations.
7. Shapes enclosed by contour.		Contained entities.
8. Spatially ordered shapes.		A sequence.
9. Linking line.		Relationship between entities.
10. Linking-line quality.		Type of relationship between entities.
11. Linking-line thickness.		Strength of relationship between entities.
12. Tab connector.		A fit between components.
13. Proximity.		Groups of components.

Semantics of structure

Graphical Code	Semantics
Shapes connected by contour	Related entities, path between entities
Thickness of connecting contour	Strength of relationship
Color and texture of connecting contour	Type of relationship
Shapes enclosed by a contour, or a common texture, or a common color	Contained entities. Related entities
Nested regions, partitioned regions	Heirarchical concepts
Attached shapes	Parts of a conceptual structure

Static and Moving Patterns | IAT814 | 18.02.2009

These slides are largely copied from Colin Ware, Perception for Design
<http://ccom.umb.edu/vislab/VisCourse/index.html> © 2006

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Grammar of maps

- Common features of geographic maps
 - Areas,
 - line features
 - point features

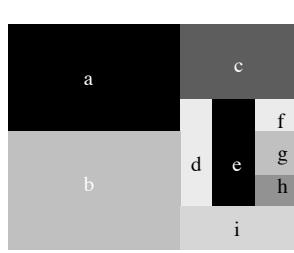
Static and Moving Patterns | IAT814 | 18.02.2009

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

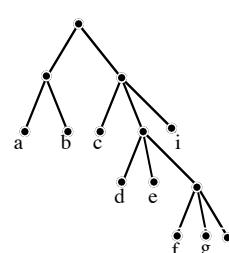
Maps

- Visual grammar of maps

Graphical Code	Visual Instantiation	Semantics
1. Closed contour.		Geographic region.
2. Colored region.		Geographic region.
3. Textured region.		Geographic region.
4. Line.		Linear map features such as rivers, roads, etc. Depends on scale.
5. Dot.		Point features such as town, building. Depends on scale.
6. Dot on line.		Point feature such as town on linear feature such as road.
7. Dot in closed contour.		Point feature such as town located within a geographic region.
8. Line crosses closed-contour region.		Linear feature such as river crossing geographic region.
9. Line exits closed-contour region.		A linear feature such as a river terminates in a geographic region.
10. Overlapping contour, colored regions, textured regions.		Overlapping geographically defined areas.


Static and Moving Patterns | IAT814 | 18.02.2009

 SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY


Treemaps and hierarchies

- Treemaps use areas (size)
- SP tree
- Graph Trees use connectivity (structure)

a

b

www.smartmoney.com

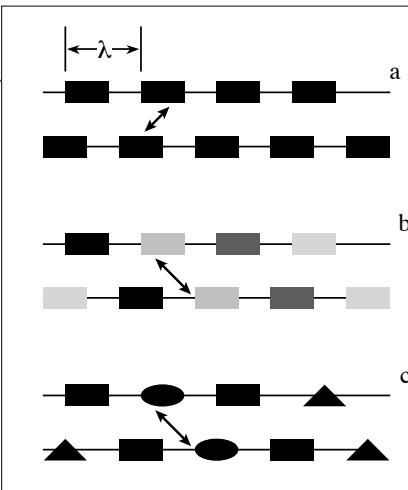
These slides are largely copied from Colin Ware, Perception for Design
<http://ccom.uth.edu/vislab/VisCourse/index.html> © 2006

Static and Moving Patterns | IAT814 | 18.02.2009

 SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Part II: Patterns in Motion

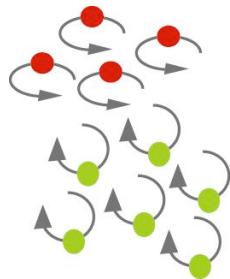
- How can we use motion as a display technique?
- Gestalt principle of common fate


These slides are largely copied from Colin Ware, Perception for Design
<http://ccom.unh.edu/vislab/VisCourse/index.html> © 2006

Static and Moving Patterns | IAT814 | 18.02.2009

Limitation due to Frame Rate

- Can only show motions that are limited by the Frame Rate.
- Maximum displacement of $\lambda/2$ before perception of reversed direction
- λ is aperture size
- We can increase by using additional symbols.
- Limitation on throughput related to *correspondence problem*

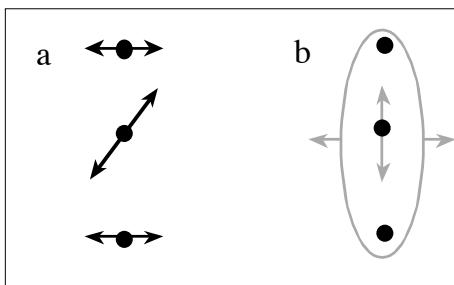


These slides are largely copied from Colin Ware, Perception for Design
<http://ccom.unh.edu/vislab/VisCourse/index.html> © 2006

Static and Moving Patterns | IAT814 | 18.02.2009

Motion as a visual attribute (Common fate)

correlation between points:


- frequency, phase or amplitude
- Result: phase is most noticeable (Ware)
- Shape is also a strong grouper (Bartram)

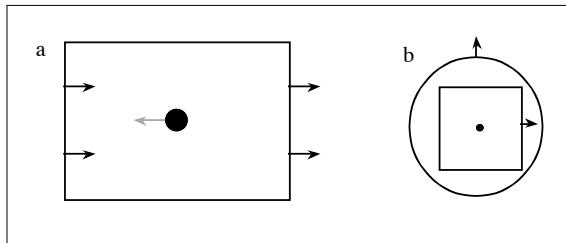
Static and Moving Patterns | IAT814 | 18.02.2009
These slides are largely copied from Colin Ware, Perception for Design
<http://ccom.unh.edu/vislab/VisCourse/index.html> © 2006

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Motion is Highly Contextual

- Group moving objects in hierarchical fashion.

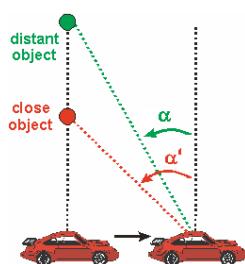
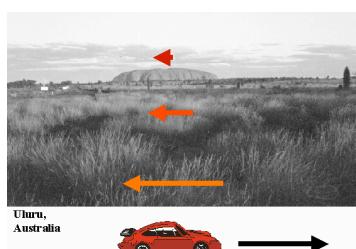
Static and Moving Patterns | IAT814 | 18.02.2009


These slides are largely copied from Colin Ware, Perception for Design
<http://ccom.unh.edu/vislab/VisCourse/index.html> © 2006

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Frame as motion context

- The stationary Dot is perceived as moving in (a).
 - *Vection*
- The circle has no effect on this process in (b).



These slides are largely copied from Colin Ware, Perception for Design
<http://ccom.unh.edu/vislab/VisCourse/index.html> © 2006

Static and Moving Patterns | IAT814 | 18.02.2009

Motion parallax

- when you look out of the side window of a car or a train, you see close objects translating very fast (bushes) and distant objects passing very slow (mountains) or even being stationary (sun)
- *Motion parallax*: the inverse relation between angular speed and distance

Static and Moving Patterns | IAT814 | 18.02.2009

Motion parallax

- **Demo1:** <http://psych.hanover.edu/Krantz/MotionParallax/MotionParallax.html>
- **Demo 2** http://www.psypress.co.uk/mather/resources/swf/Demo10_2.swf

Static and Moving Patterns | IAT814 | 18.02.2009

Patterns in motion

- We can also use motion as a display technique to represent data that is either static or dynamic.
- The perception of dynamic patterns is not understood as well as the perception of static patterns.
- But we are very sensitive to patterns in motion and, if we can learn to use motion effectively, it can be a good way to display certain aspects of data.

Static and Moving Patterns | IAT814 | 18.02.2009

Which patterns are useful?

- Rich literature for design of static representations
- Motion perceptually powerful but no principled guidelines for use
- Features shown to be perceptually powerful are
 - Phase (Ware)
 - Direction, flicker, velocity (Healey)
 - Shape (Bartram)
- Experiments show motion-based techniques very effective - but there are caveats
 - distraction
 - false association
- Empirically based guidelines for appropriate use

Static and Moving Patterns | IAT814 | 18.02.2009

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Potential uses?

- *Signaling*: cognitive tools for managing attention
 - events (external dynamic information)
 - markers (navigation, history, guides)
- *Integration*:
 - linking heterogeneous, scattered elements (brushing)
 - filtering in context
- Current codes have limitations:
 - over-use and saturation
 - poor detection outside focal area (*acuity*)

Static and Moving Patterns | IAT814 | 18.02.2009

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Why Motion?

- Perceptually efficient
 - strongest cue across entire visual field
 - track multiple motions in parallel [Pylyshyn]

Static and Moving Patterns | IAT814 | 18.02.2009

Why Motion?

- Perceptually efficient
- Interpretatively rich
 - Rich disciplines of expression and performance
 - Socially meaningful (Heider, Kassin)
 - motion conveys structure and behaviour [Johanssen,Heider,Cutting,Berry]

Static and Moving Patterns | IAT814 | 18.02.2009

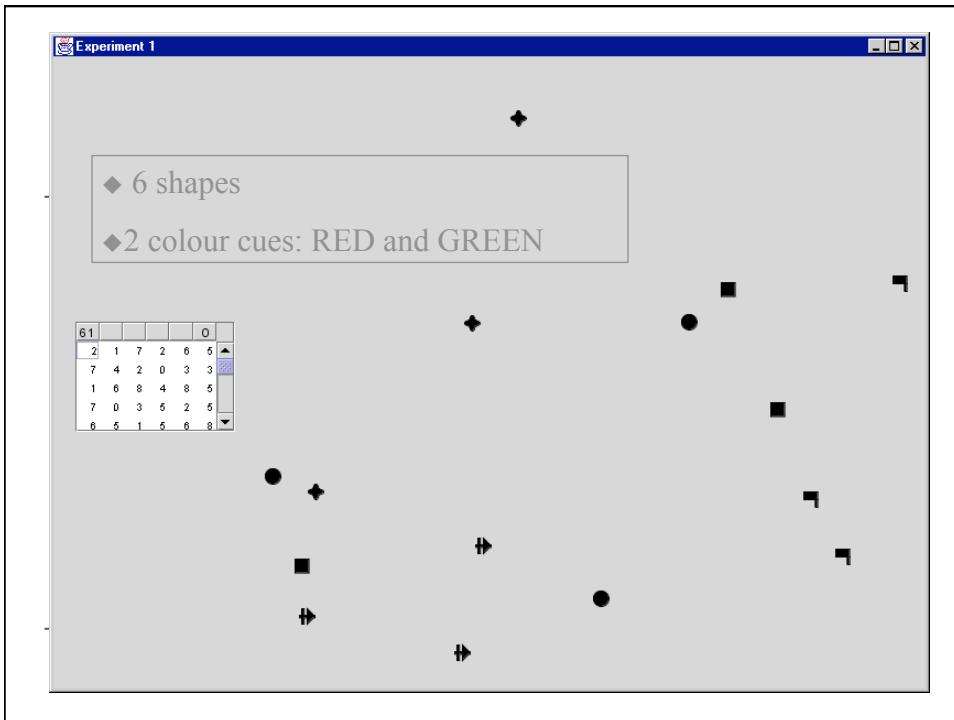
Why Motion?

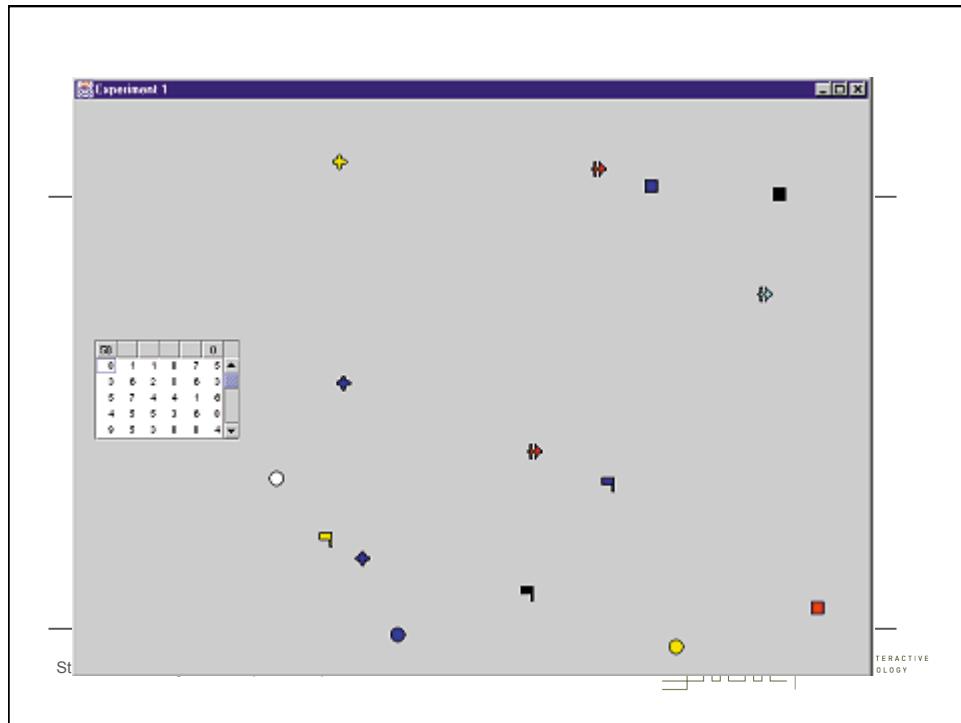
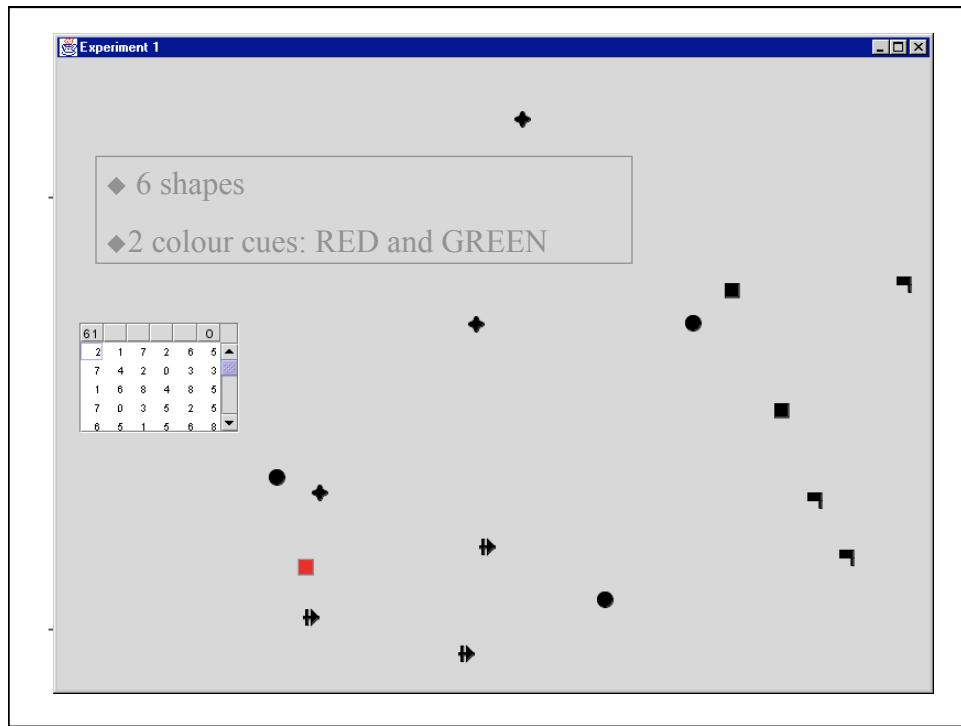
- Perceptually efficient
- Interpretatively rich
- “free” display dimension ?

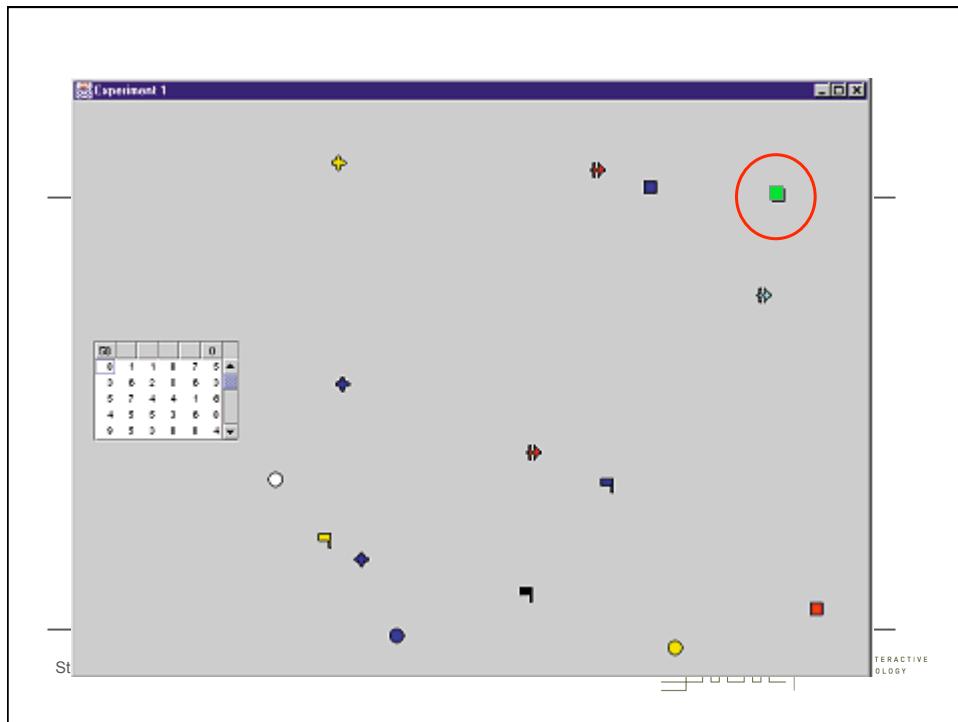
Static and Moving Patterns | IAT814 | 18.02.2009

Why Motion?

- Perceptually efficient
- Interpretatively rich
- “free” display dimension
- **grouping effect:**
 - conveys relationships [Bartram, Ware, Michotte, Alvarado]

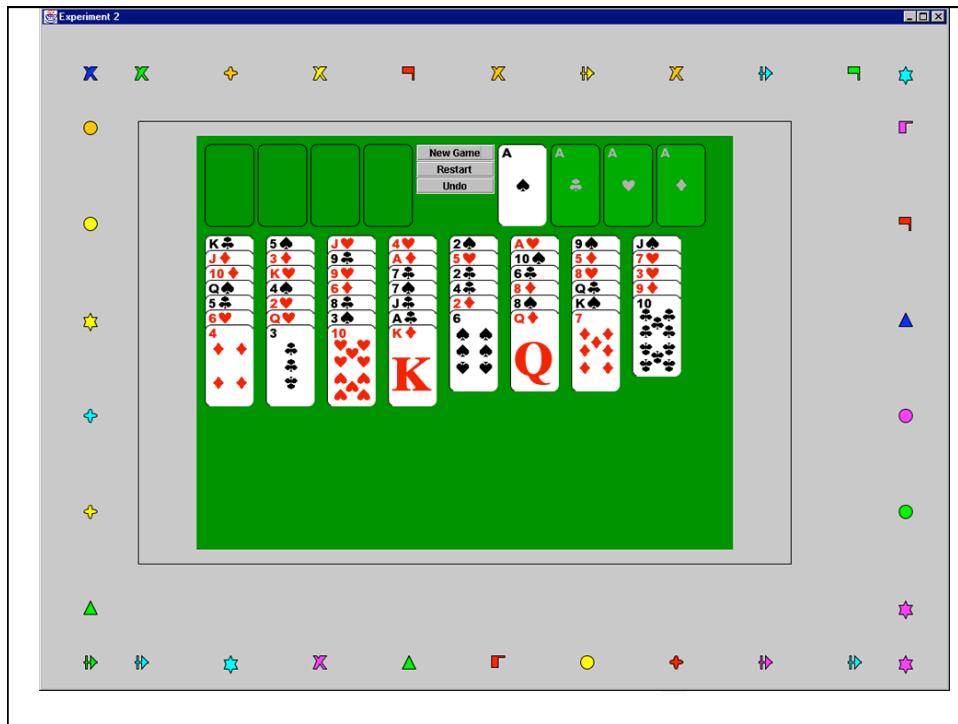

Static and Moving Patterns | IAT814 | 18.02.2009


Bartram motion experiments

- Three empirical studies :
- Which motion features are useful for signals?
 - Large fields of view
- How do motions contribute to distraction?
- Features for grouping
 - Filtering
 - Brushing (association)

Static and Moving Patterns | IAT814 | 18.02.2009



Results

- Detection:
 - Moticons were extremely accurately detected
 - Location had large error effect on static cues
 - colour: 5% and 24% error rates
 - shape: 4% and 15% error rates
 - Location doubled static detection times; moticons were constant
- Identification – as above
 - colour: 14% and 19% error rates (of detected)
 - Moticons highly accurate: ~ 1% error

Motion types

- Demo
- <file:///Users/lyn/Research/Motion/Dev/MotionExperiments/Applets/distraction.html>

Static and Moving Patterns | IAT814 | 18.02.2009

 SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Conclusions: Moticons for cueing attention, but...

- Moticons very effective for signaling
 - better than colour and shape, especially in periphery
 - Effective over many locations, types and amplitudes
- Certain motion shapes are more distracting
 - traveling worse than anchored
 - linear shape good candidate: detectable but not distracting
- Task load affects detection
 - signal can be tuned to task
 - Signal can indicate engagement?

Static and Moving Patterns | IAT814 | 18.02.2009

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Filtering and brushing

- User configures display to make information easily accessible and show subgroups
- **filtering** takes away superfluous data
- **Brushing** highlights data points interactively and visually connects arbitrary distributed objects [Baecker and Cleveland87]
 - brushing requires its own brushing code (colour)
 - problems with colour in periphery
- Motion can be used for brushing and filtering

Static and Moving Patterns | IAT814 | 18.02.2009

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Recall ...

- **strong grouping effect:** things which move together in a similar fashion elicit percept they are a group
- <file:///Users/lyn/Research/Motion/Dev/MotionExperiments/Applets/OneGroup.html>

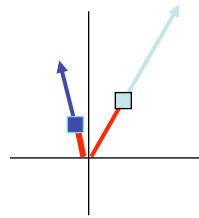
Static and Moving Patterns | IAT814 | 18.02.2009

Questions

- What does it mean to move in a “similar way”?
- Similarity tolerance so that we can cause effect when desired (*grouping*); and
- ensure that multiple unrelated moving objects are perceived as distinct (*discrimination*).
 - (caveat!) Applies to many environments

Static and Moving Patterns | IAT814 | 18.02.2009

Brushing with motion


- Dual task visual search experiments
- High level of distractors
- [17 motion combinations](#)
<file:///Users/lyn/Research/Motion/Dev/MotionExperiments/Applets/TwoGroups.html>

Static and Moving Patterns | IAT814 | 18.02.2009

Results

- Motion groups “pop out”
- Motion type is most effective feature for both ranking and discrimination
- Circular type is most visually dominant
- Motion directions blur together $< 45^\circ$ and at 180°
- Large effect for *quadrant change*
- Motions work for brushing
- Care has to be taken for involuntary grouping

Static and Moving Patterns | IAT814 | 18.02.2009

Visualizing relationships

- Preliminary work in representing causality
 - with Colin Ware (1999)
 - With Emily Yao (2007)
- Based on Michotte
- Can we overlay causality information on existing representations like spreadsheets and graphs?

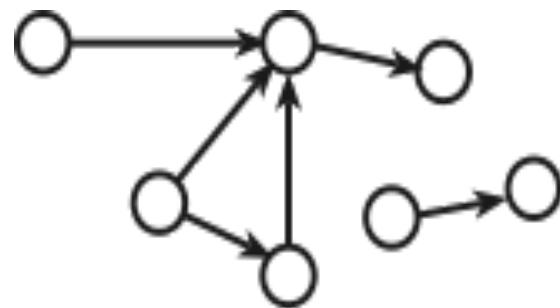
Static and Moving Patterns | IAT814 | 18.02.2009

Perception of causality from motion

- Michotte's claim: direct perception of causality
- When we see a billiard ball strike another and set the second ball in motion, we perceive that the motion of the first ball causes the motion of the second, according to the work of Michotte.
- Precise timing is required to achieve perceived causality.

Static and Moving Patterns | IAT814 | These slides are 2009 copied from Colin Ware, Perception for Design
<http://ccom.unh.edu/vislab/VisCourse/index.html> © 2006

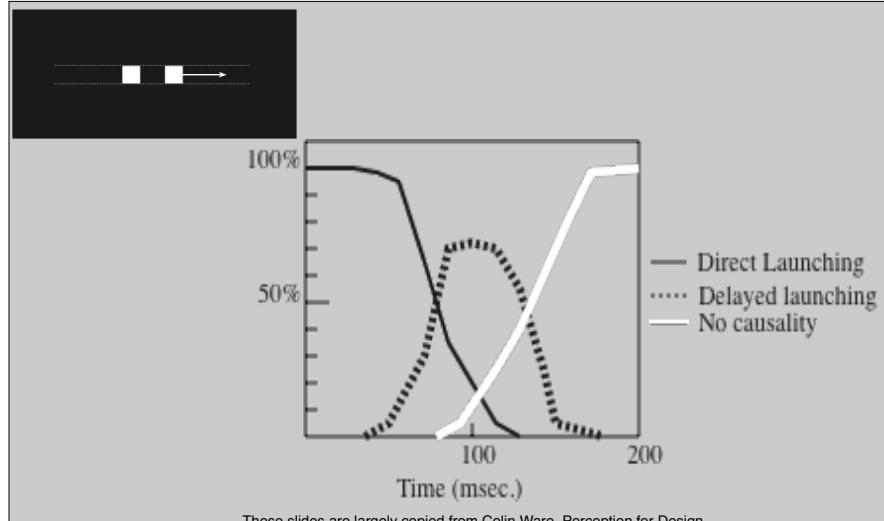
Using motion to display causality


- Michotte found that for the effect he called launching to be perceived, the second object had to move within 70 milliseconds of contact;
- After this interval, subjects still perceived the first object as setting the second object in motion, but the phenomenon was qualitatively different.
- He called it delayed launching.
- Beyond about 160 milliseconds, there was no longer an impression that one event caused the other; instead, unconnected movements of the two objects were perceived.

Static and Moving Patterns | These slides are largely copied from Colin Ware, Perception for Design
<http://ccom.unh.edu/vislab/VisCourse/index.html> © 2006

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

A causal graph



Static and Moving Patterns | IAT814 | 18.02.2009

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Michotte's Causality Perception

Visual Causal Vectors

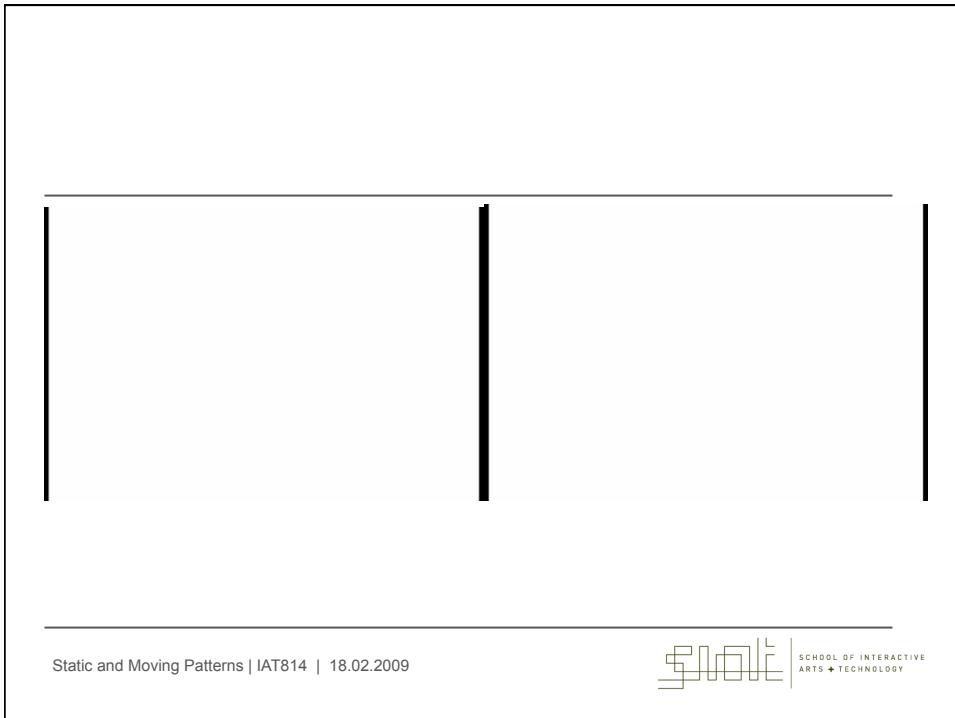
These slides are largely copied from Colin Ware, Perception for Design
<http://ccom.unh.edu/vislab/VisCourse/index.html> © 2006

Static and Moving Patterns | IAT814 | 18.02.2009

Current work on causality

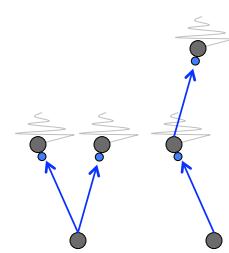
- Scholl et al. (perception of causality)
- Neufeld, Ware, Bartram, Irani
- Yao and Bartram - using motion to overlay causality on other views
 - E.g. maps and graphs
- Value: increase expressive range beyond that permitted by static diagrams

Static and Moving Patterns | IAT814 | 18.02.2009



Causal motion

Static and Moving Patterns | IAT814 | 18.02.2009


Static and Moving Patterns | IAT814 | 18.02.2009

What we discovered

- We can successfully use motion cues to identify paths
- If we want to show just the existence of the causal path, it's sufficient to animate path and maintain timing (70-160 ms)
 - Vector effect
- However, if we want to add information about the strength of the effect we have to use some kind of node interaction
 - Node effect
- With small node effects, we can identify whether one causal hit is stronger than another
 - Phase and grouping effects
- need to explore design space

Static and Moving Patterns | IAT814 | 18.02.2009

Meaningful motion

- Motion is expressively rich (dance, theatre, mime,)
- What are the properties of motion that make it so expressive?
- Trajectory [Tagiuri], interaction [Lethbridge+Ware, Heider+Simmel, etc], smoothness vs jerkiness, velocity, acceleration, amplitude ???
- Experiments [Bartram+Nakatani] in what contributes to making motions meaningful
 - Application in ambient, social and therapeutic interfaces and visualizations
 - Map emotions to more abstract meanings
 - [demo](#)

Static and Moving Patterns | IAT814 | 18.02.2009

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Conclusion

- Motion is under-researched, but evidence suggests its power.
- Initial usable features include velocity, direction, phase, shape (type) and flicker/blink
- There are interactions between motion features and static features that need to be investigated
 - E.g. brighter dots generate stronger motion signals (Schwartz, 2000?)
http://www.settheory.com/Glass_paper/Kanizsa_observations.html

These slides are largely copied from Colin Ware, Perception for Design
<http://ccom.umb.edu/vislab/VisCourse/index.html> © 2006

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY