REPRESENTING NUMBERS

DECIMAL	BINARY	OCTAL	HEXADECIMAL	
0	000	0	O	
1	001	1	1	
2	010	2	2	
3	011	3	3	
4	100	4	4	
5	101	5	5	
6	110	6	6	
7	111	7	7	
8	1000	10	8	
9	1001	11	9	
10	1010	12	Α	
11	1011	13	В	
12	1100	14	C	
13	1101	15	, D	
14	1110	16	Ε	
15	1111	17	F	
16	10000	20	10	
 255=2 ⁸ -1	11111111 (11111111 (8 bits = 1 byte)		
 1023=2 ¹⁰ -1	1111111111	(10 bits)	2 ¹⁰ =1024=1K	
4095=2 ¹² -1	1111111111	11111111111 (12 bits)		
 32767=2 ¹⁵ -	1 1111111111	11111111111111 (15 bits)		
65535=2 ¹⁶ -	1 111111111	111111111111111 (16 bits = 1 word = 2 bytes)		

Therefore, n bits can represent 2^n numbers, $0 \longrightarrow 2^{n}-1$ (fixed point)

For negative numbers, "two's complement" notation is used where the most significant bit is a "sign bit" (0 for positive, 1 for negative). The process is: invert all bits and add 1. For example:

for 12 bits, 4096 numbers can be represented (0 ->2047,-1 -> -2048) for 16 bits, 65536 numbers can be represented

max positive: 32767 011111111111111

-1 111111111111111

For "real numbers" (with decimals) either use "floating point" notation where groups of bits represent the exponent and mantissa or assign n bits as integers and 16-n bits as the "fraction".

For example, with a 1K wavetable (1024 values), the address of any value can be referenced as an "index" to be added to the base address of the table, where the index goes from 0 to 1023, and can be represented by 10 bits. With a 16-bit word, the remaining 6 bits can function as a "fraction" as if the table were actually 2^{16} in size. Therefore the frequency resolution using the table is:

$$\Delta f$$
 = Sampling Rate/Table Size = 2^{15} / 2^{16} = 0.5 Hz SR / N

To step through a wavetable, size N, at sampling rate SR, to produce a frequency F:

Sample Increment = F. N / SR

F = SI . SR / N