Please note:

To view the Fall 2017 Academic Calendar go to http://www.sfu.ca/students/calendar/2017/fall.html

Department of Mathematics
School of Computing Science
Simon Fraser University Calendar | Spring 2018

Mathematics and Computing Science Joint Honours

Bachelor of Science

This program is offered co-operatively by the Department of Mathematics and the School of Computing Science. In general, students are expected to meet the requirements of both the department and the school with respect to admission, continuation and graduation requirements.

Prerequisite Grade Requirement

To enroll in a course offered by the Department of Mathematics, a student must obtain a grade of C- or better in each prerequisite course. Some courses may require higher prerequisite grades. Check the MATH course’s Calendar description for details.

Students will not normally be permitted to enrol in any course for which a D grade or lower was obtained in any prerequisite. No student may complete, for further credit, any course offered by the Department of Mathematics which is a prerequisite for a course the student has already completed with a grade of C- or higher, without permission of the department.

Computing science course entry requires a grade of C- or better in each prerequisite course. A minimum 2.40 CGPA is required for 200, 300 and 400 division computing courses.

Program Requirements

The program is subject to Faculty of Science and University regulations. Course and prerequisite admission is subject to departmental requirements.

Faculty of Applied Sciences residency requirements apply to the computing science courses used toward the program.

Students complete at least 120 units of which at least 60 units are at the upper division level as specified below.

Lower Division Requirements

Students complete at least 43-47 units, including all three of

CMPT 120 - Introduction to Computing Science and Programming I (3) *

An elementary introduction to computing science and computer programming, suitable for students with little or no programming background. Students will learn fundamental concepts and terminology of computing science, acquire elementary skills for programming in a high-level language and be exposed to diverse fields within, and applications of computing science. Topics will include: pseudocode, data types and control structures, fundamental algorithms, computability and complexity, computer architecture, and history of computing science. Treatment is informal and programming is presented as a problem-solving tool. Prerequisite: BC Math 12 or equivalent is recommended. Students with credit for CMPT 102, 128, 130 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129, 130 or 135 first may not then take this course for further credit. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
D100 Angelica Lim
Mo, Fr 9:30 AM – 10:20 AM
We 9:30 AM – 10:20 AM
AQ 3181, Burnaby
AQ 3182, Burnaby
D101 Angelica Lim
Th 9:30 AM – 10:20 AM
ASB 9838, Burnaby
D102 Angelica Lim
Th 10:30 AM – 11:20 AM
ASB 9838, Burnaby
D103 Angelica Lim
Th 11:30 AM – 12:20 PM
ASB 9838, Burnaby
D104 Angelica Lim
Th 12:30 PM – 1:20 PM
ASB 9838, Burnaby
D105 Angelica Lim
Th 1:30 PM – 2:20 PM
ASB 9838, Burnaby
D106 Angelica Lim
Th 2:30 PM – 3:20 PM
ASB 9838, Burnaby
D107 Angelica Lim
Th 3:30 PM – 4:20 PM
ASB 9838, Burnaby
D108 Angelica Lim
Th 3:30 PM – 4:20 PM
ASB 9838, Burnaby
CMPT 125 - Introduction to Computing Science and Programming II (3) *

A rigorous introduction to computing science and computer programming, suitable for students who already have some background in computing science and programming. Intended for students who will major in computing science or a related program. Topics include: fundamental algorithms; elements of empirical and theoretical algorithmics; abstract data types and elementary data structures; basic object-oriented programming and software design; computation and computability; specification and program correctness; and history of computing science. Prerequisite: CMPT 120. Corequisite: CMPT 127. Students with credit for CMPT 126, 129, 135 or CMPT 200 or higher may not take for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Bobby Chan
Mo, We, Fr 2:30 PM – 3:20 PM
AQ 3182, Burnaby
CMPT 127 - Computing Laboratory (3)

Builds on CMPT 120 to give a hands-on introduction to programming in C and C++, the basics of program design, essential algorithms and data structures. Guided labs teach the standard tools and students exploit these ideas to create software that works. To be taken in parallel with CMPT 125. Prerequisite: CMPT 120 or CMPT 128 or CMPT 130. Corequisite: CMPT 125.

Section Instructor Day/Time Location
D100 Richard Vaughan
Tu 9:30 AM – 12:20 PM
ASB 9838, Burnaby
D200 Richard Vaughan
Tu 12:30 PM – 3:20 PM
ASB 9838, Burnaby
D300 Richard Vaughan
Tu 3:30 PM – 6:20 PM
ASB 9838, Burnaby

or both of 

CMPT 130 - Introduction to Computer Programming I (3)

An introduction to computing science and computer programming, using a systems oriented language, such as C or C++. This course introduces basic computing science concepts. Topics will include: elementary data types, control structures, functions, arrays and strings, fundamental algorithms, computer organization and memory management. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, or 157). Students with credit for CMPT 102, 120, 128 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129 or 135 first may not then take this course for further credit. Quantitative/Breadth-Science.

CMPT 135 - Introduction to Computer Programming II (3)

A second course in systems-oriented programming and computing science that builds upon the foundation set in CMPT 130 using a systems-oriented language such as C or C++. Topics: a review of the basic elements of programming; introduction to object-oriented programming (OOP); techniques for designing and testing programs; use and implementation of elementary data structures and algorithms; introduction to embedded systems programming. Prerequisite: CMPT 130. Students with credit for CMPT 125, 126, or 129 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
D100 John Edgar
We 1:30 PM – 2:20 PM
Fr 12:30 PM – 2:20 PM
SUR 3310, Surrey
SUR 3310, Surrey
D101 John Edgar
We 2:30 PM – 3:20 PM
SUR 4080, Surrey
D102 John Edgar
We 3:30 PM – 4:20 PM
SUR 4080, Surrey
D103 John Edgar
We 4:30 PM – 5:20 PM
SUR 4080, Surrey
D104 John Edgar
We 12:30 PM – 1:20 PM
SUR 4080, Surrey

and all of

CMPT 150 - Introduction to Computer Design (3)

Digital design concepts are presented in such a way that students will learn how basic logic blocks of a simple computer are designed. Topics covered include: basic Von Neumann computer architecture; an introduction to assembly language programming; combinational logic design; and sequential logic design. Prerequisite: Strongly recommended: MACM 101 and either CMPT 120 or equivalent programming. Students with credit for ENSC 150 or CMPT 290 may not take this course for further credit. Quantitative.

CMPT 225 - Data Structures and Programming (3)

Introduction to a variety of practical and important data structures and methods for implementation and for experimental and analytical evaluation. Topics include: stacks, queues and lists; search trees; hash tables and algorithms; efficient sorting; object-oriented programming; time and space efficiency analysis; and experimental evaluation. Prerequisite: (MACM 101 and ((CMPT 125 and 127), CMPT 129 or CMPT 135)) or (ENSC 251 and ENSC 252). Quantitative.

Section Instructor Day/Time Location
D100 David Mitchell
Mo 1:30 PM – 2:20 PM
We 1:30 PM – 2:20 PM
Fr 1:30 PM – 2:20 PM
DFA 300, Burnaby
SSCB 9201, Burnaby
SSCB 9201, Burnaby
D101 David Mitchell
Mo 10:30 AM – 11:20 AM
ASB 9838, Burnaby
D102 David Mitchell
Mo 10:30 AM – 11:20 AM
ASB 9838, Burnaby
D103 David Mitchell
Mo 11:30 AM – 12:20 PM
ASB 9838, Burnaby
D104 David Mitchell
Mo 11:30 AM – 12:20 PM
ASB 9838, Burnaby
D105 David Mitchell
Fr 2:30 PM – 3:20 PM
ASB 9838, Burnaby
D106 David Mitchell
Fr 2:30 PM – 3:20 PM
ASB 9838, Burnaby
D107 David Mitchell
Fr 3:30 PM – 4:20 PM
ASB 9838, Burnaby
D108 David Mitchell
Fr 3:30 PM – 4:20 PM
ASB 9838, Burnaby
E100 Leonid Chindelevitch
Tu 5:30 PM – 8:20 PM
HCC 1900, Vancouver
CMPT 276 - Introduction to Software Engineering (3)

An overview of various techniques used for software development and software project management. Major tasks and phases in modern software development, including requirements, analysis, documentation, design, implementation, testing,and maintenance. Project management issues are also introduced. Students complete a team project using an iterative development process. Prerequisite: One W course, CMPT 225, (MACM 101 or (ENSC 251 and ENSC 252)) and (MATH 151 or MATH 150). MATH 154 or MATH 157 with at least a B+ may be substituted for MATH 151 or MATH 150. Students with credit for CMPT 275 may not take this course for further credit.

Section Instructor Day/Time Location
D200 Brian Fraser
Mo, We, Fr 10:30 AM – 11:20 AM
SUR 5140, Surrey
E100 Steve Pearce
Th 5:30 PM – 8:20 PM
WMC 3260, Burnaby
MACM 101 - Discrete Mathematics I (3)

Introduction to counting, induction, automata theory, formal reasoning, modular arithmetic. Prerequisite: BC Math 12 (or equivalent), or any of MATH 100, 150, 151, 154, 157. Quantitative/Breadth-Science.

Section Instructor Day/Time Location
D100 Binay Bhattacharya
Mo, Fr 10:30 AM – 11:20 AM
We 10:30 AM – 11:20 AM
SWH 10081, Burnaby
SSCB 9201, Burnaby
D101 Binay Bhattacharya
Tu 9:30 AM – 10:20 AM
AQ 5008, Burnaby
D102 Binay Bhattacharya
Tu 9:30 AM – 10:20 AM
RCB 5125, Burnaby
D103 Binay Bhattacharya
Tu 2:30 PM – 3:20 PM
AQ 5035, Burnaby
D104 Binay Bhattacharya
Tu 2:30 PM – 3:20 PM
AQ 5047, Burnaby
D105 Binay Bhattacharya
Tu 3:30 PM – 4:20 PM
AQ 5014, Burnaby
D106 Binay Bhattacharya
Tu 3:30 PM – 4:20 PM
AQ 5035, Burnaby
D107 Binay Bhattacharya
Tu 4:30 PM – 5:20 PM
AQ 5020, Burnaby
D108 Binay Bhattacharya
Tu 4:30 PM – 5:20 PM
AQ 5039, Burnaby
D200 Steve Pearce
Tu 1:30 PM – 2:20 PM
Th 12:30 PM – 2:20 PM
SWH 10081, Burnaby
SSCB 9201, Burnaby
D201 Steve Pearce
We 9:30 AM – 10:20 AM
AQ 2104, Burnaby
D202 Steve Pearce
We 9:30 AM – 10:20 AM
BLU 11901, Burnaby
D203 Steve Pearce
We 2:30 PM – 3:20 PM
BLU 11911, Burnaby
D204 Steve Pearce
We 2:30 PM – 3:20 PM
WMC 2260, Burnaby
D205 Steve Pearce
We 3:30 PM – 4:20 PM
WMC 2268, Burnaby
D206 Steve Pearce
We 3:30 PM – 4:20 PM
BLU 11911, Burnaby
D207 Steve Pearce
We 4:30 PM – 5:20 PM
BLU 11911, Burnaby
D208 Steve Pearce
We 4:30 PM – 5:20 PM
WMC 2268, Burnaby
D300 Toby Donaldson
Mo, We, Fr 11:30 AM – 12:20 PM
SUR 3310, Surrey
D301 Toby Donaldson
Mo 12:30 PM – 1:20 PM
SUR 3120, Surrey
D302 Toby Donaldson
Mo 1:30 PM – 2:20 PM
SUR 3120, Surrey
D303 Toby Donaldson
Mo 2:30 PM – 3:20 PM
SUR 3120, Surrey
D304 Toby Donaldson
Mo 3:30 PM – 4:20 PM
SUR 3120, Surrey
MACM 201 - Discrete Mathematics II (3)

A continuation of MACM 101. Topics covered include graph theory, trees, inclusion-exclusion, generating functions, recurrence relations, and optimization and matching. Prerequisite: MACM 101 or (ENSC 251 and one of MATH 232 or MATH 240). Quantitative.

Section Instructor Day/Time Location
D100 Bojan Mohar
Mo 12:30 PM – 1:20 PM
We, Fr 12:30 PM – 1:20 PM
DFA 300, Burnaby
DFA 300, Burnaby
D200 Mahsa Faizrahnemoon
Mo, We, Fr 8:30 AM – 9:20 AM
SUR 5280, Surrey
OPO1
TBD
OP02
TBD
MACM 203 - Computing with Linear Algebra (2) +

Using a mathematical software package for doing calculations in linear algebra. Development of computer models that analyze and illustrate applications of linear algebra. All calculations and experiments will be done in the Matlab software package. Topics include: large-scale matrix calculations, experiments with cellular automata, indexing, searching and ranking pages on the internet, population models, data fitting and optimization, image analysis, and cryptography. Prerequisite: One of CMPT 102, 120, 126, 128 or 130 and one of MATH 150, 151, 154 or 157 and one of MATH 232 or 240. MATH 232 or 240 can be taken as corequisite. Students in excess of 80 units may not take MACM 203 for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Petr Lisonek
Tu 2:30 PM – 3:20 PM
ASB 9838, Burnaby
D101
We 2:30 PM – 3:20 PM
AQ 3148.1, Burnaby
D102
We 3:30 PM – 4:20 PM
AQ 3148.1, Burnaby
MACM 204 - Computing with Calculus (2) +

Using a mathematical software package for doing computations from calculus. Development of computer models that analyze and illustrate applications of calculus. All calculations and experiments will be done in the Maple software package. Topics include: graphing functions and data, preparing visual aids for illustrating mathematical concepts, integration, Taylor series, numerical approximation methods, 3D visualization of curves and surfaces, multi-dimensional optimization, differential equations and disease spread models. Prerequisite: One of CMPT 102, 120, 126, 128 or 130 and MATH 251. MATH 251 can be taken as a corequisite. Students in excess of 80 units may not take MACM 204 for further credit. Quantitative.

MATH 242 - Introduction to Analysis I (3)

Mathematical induction. Limits of real sequences and real functions. Continuity and its consequences. The mean value theorem. The fundamental theorem of calculus. Series. Prerequisite: MATH 152; or MATH 155 or 158 with a grade of B. Quantitative.

Section Instructor Day/Time Location
D100 Weiran Sun
Mo, We, Fr 1:30 PM – 2:20 PM
SSCC 9000, Burnaby
D101
Th 2:30 PM – 3:20 PM
WMC 2810, Burnaby
D102
Th 3:30 PM – 4:20 PM
AQ 5018, Burnaby
MATH 251 - Calculus III (3)

Rectangular, cylindrical and spherical coordinates. Vectors, lines, planes, cylinders, quadric surfaces. Vector functions, curves, motion in space. Differential and integral calculus of several variables. Vector fields, line integrals, fundamental theorem for line integrals, Green's theorem. Prerequisite: MATH 152; or MATH 155 or MATH 158 with a grade of at least B. Recommended: It is recommended that MATH 240 or 232 be taken before or concurrently with MATH 251. Quantitative.

Section Instructor Day/Time Location
E100 Steven Ruuth
Mo, We 4:30 PM – 5:50 PM
WMC 3520, Burnaby
OP01
TBD
STAT 270 - Introduction to Probability and Statistics (3)

Basic laws of probability, sample distributions. Introduction to statistical inference and applications. Prerequisite: or Corequisite: MATH 152 or 155 or 158. Students wishing an intuitive appreciation of a broad range of statistical strategies may wish to take STAT 100 first. Quantitative.

Section Instructor Day/Time Location
C100 Distance Education
D100 Boxin Tang
Mo 9:30 AM – 10:20 AM
We, Fr 9:30 AM – 10:20 AM
EDB 7618, Burnaby
SWH 10081, Burnaby
D900 Maryam DehghaniEstarki
Tu 8:30 AM – 10:20 AM
Th 8:30 AM – 9:20 AM
SUR 3170, Surrey
SUR 3170, Surrey
OP01
TBD
OP09
TBD

and one of

MATH 150 - Calculus I with Review (4)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Topics as for Math 151 with a more extensive review of functions, their properties and their graphs. Recommended for students with no previous knowledge of Calculus. In addition to regularly scheduled lectures, students enrolled in this course are encouraged to come for assistance to the Calculus Workshop (Burnaby), or Math Open Lab (Surrey). Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B+, or MATH 100 with a grade of at least B-, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 151, 154 or 157 may not take MATH 150 for further credit. Quantitative.

Section Instructor Day/Time Location
C100 Distance Education
D100
Mo, Tu, We, Fr 8:30 AM – 9:20 AM
WMC 3520, Burnaby
D200
Mo, We, Fr 11:30 AM – 12:20 PM
We 1:30 PM – 2:20 PM
SUR 2750, Surrey
SUR 2750, Surrey
OP01
TBD
OP02
TBD
MATH 151 - Calculus I (3) **

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Logarithmic and exponential functions, trigonometric functions, inverse functions. Limits, continuity, and derivatives. Techniques of differentiation, including logarithmic and implicit differentiation. The Mean Value Theorem. Applications of differentiation including extrema, curve sketching, Newton's method. Introduction to modeling with differential equations. Polar coordinates, parametric curves. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.

MATH 154 - Calculus I for the Biological Sciences (3) ++

Designed for students specializing in the biological and medical sciences. Topics include: limits, growth rate and the derivative; elementary functions, optimization and approximation methods, and their applications; mathematical models of biological processes. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 151 or 157 may not take MATH 154 for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Ladislav Stacho
Mo 8:30 AM – 9:20 AM
We, Fr 8:30 AM – 9:20 AM
SSCB 9200, Burnaby
SSCB 9200, Burnaby
OP01
TBD
MATH 157 - Calculus I for the Social Sciences (3) ++

Designed for students specializing in business or the social sciences. Topics include: limits, growth rate and the derivative; logarithmic exponential and trigonometric functions and their application to business, economics, optimization and approximation methods; functions of several variables. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 151 or 154 may not take MATH 157 for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Luis Goddyn
Mo, Fr 11:30 AM – 12:20 PM
We 11:30 AM – 12:20 PM
SWH 10081, Burnaby
DFA 300, Burnaby
D200 Natalia Kouzniak
Mo, We, Fr 12:30 PM – 1:20 PM
SUR 3090, Surrey
OP01
TBD
OP02
TBD

and one of

MATH 152 - Calculus II (3) **

Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. First-order separable differential equations and growth models. Sequences and series, series tests, power series, convergence and applications of power series. Prerequisite: MATH 150 or 151; or MATH 154 or 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Brenda Davison
Mo, We, Fr 8:30 AM – 9:20 AM
SSCC 9001, Burnaby
D200
Mo, We, Fr 11:30 AM – 12:20 PM
SUR 5280, Surrey
D300
Mo, We, Fr 8:30 AM – 9:20 AM
WMC 2810, Burnaby
OP01
TBD
OP02
TBD
MATH 155 - Calculus II for the Biological Sciences (3) ++

Designed for students specializing in the biological and medical sciences. Topics include: the integral, partial derivatives, differential equations, linear systems, and their applications; mathematical models of biological processes. Prerequisite: MATH 150, 151 or 154; or MATH 157 with a grade of at least B. Students with credit for MATH 152 or 158 may not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Petr Lisonek
Mo, We, Fr 8:30 AM – 9:20 AM
RCB IMAGTH, Burnaby
D200 Natalia Kouzniak
Mo, We, Fr 9:30 AM – 10:20 AM
SUR 5280, Surrey
OP01
TBD
OP02
TBD
MATH 158 - Calculus II for the Social Sciences (3) ++

Theory of integration and its applications; introduction to multivariable calculus with emphasis on partial derivatives and their applications; introduction to differential equations with emphasis on some special first-order equations and their applications to economics and social sciences; continuous probability models; sequences and series. Prerequisite: MATH 150 or 151 or 154 or 157. Students with credit for MATH 152 or 155 may not take MATH 158 for further credit. Quantitative.

Section Instructor Day/Time Location
E100 Michael Monagan
Mo 4:30 PM – 5:20 PM
We 4:30 PM – 6:20 PM
SSCC 9001, Burnaby
SSCC 9001, Burnaby
OP01
TBD

and one of

MATH 232 - Applied Linear Algebra (3) ++

Linear equations, matrices, determinants. Introduction to vector spaces and linear transformations and bases. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. An emphasis on applications involving matrix and vector calculations. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 240 make not take this course for further credit. Quantitative.

Section Instructor Day/Time Location
D100 Cedric Chauve
Mo, We, Fr 11:30 AM – 12:20 PM
SSCC 9001, Burnaby
D200 Randall Pyke
Mo, We, Fr 2:30 PM – 3:20 PM
SUR 3090, Surrey
OP01
TBD
OP02
TBD
MATH 240 - Algebra I: Linear Algebra (3) **

Linear equations, matrices, determinants. Real and abstract vector spaces, subspaces and linear transformations; basis and change of basis. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. Applications. Subject is presented with an abstract emphasis and includes proofs of the basic theorems. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 232 cannot take this course for further credit. Quantitative.

Section Instructor Day/Time Location
D100
Mo, We, Fr 11:30 AM – 12:20 PM
BLU 10921, Burnaby
OP01
TBD

** strongly recommended

+ The following substitutions are also permitted. They may not also be used to satisfy the upper division requirements. MACM 409 - Numerical Linear Algebra: Algorithms, Implementation and Applications (3) for MACM 203. MACM 401 - Introduction to Computer Algebra (3) for MACM 204. MACM 442 - Cryptography (3) for MACM 204.

++ with a B grade or better

Upper Division Requirements

Students complete 54 units, including all of

CMPT 307 - Data Structures and Algorithms (3)

Analysis and design of data structures for lists, sets, trees, dictionaries, and priority queues. A selection of topics chosen from sorting, memory management, graphs and graph algorithms. Prerequisite: CMPT 225, MACM 201, MATH 151 (or MATH 150), and MATH 232 or 240.

Section Instructor Day/Time Location
D100 Valentine Kabanets
Mo 10:30 AM – 11:20 AM
We, Fr 10:30 AM – 11:20 AM
WMC 3260, Burnaby
AQ 3005, Burnaby
D300 Valentine Kabanets
Mo 2:30 PM – 3:20 PM
We 2:30 PM – 3:20 PM
Fr 2:30 PM – 3:20 PM
AQ 3159, Burnaby
SSCC 9002, Burnaby
SSCK 9500, Burnaby
CMPT 308 - Computability and Complexity (3)

This course introduces students to formal models of computations such as Turing machines and RAMs. Notions of tractability and intractability are discusses both with respect to computability and resource requirements. The relationship of these concepts to logic is also covered. Prerequisite: MACM 201.

CMPT 405 - Design and Analysis of Computing Algorithms (3)

Models of computation, methods of algorithm design; complexity of algorithms; algorithms on graphs, NP-completeness, approximation algorithms, selected topics. Prerequisite: CMPT 307.

MACM 316 - Numerical Analysis I (3)

A presentation of the problems commonly arising in numerical analysis and scientific computing and the basic methods for their solutions. Prerequisite: MATH 152 or 155 or 158, and MATH 232 or 240, and computing experience. Quantitative.

Section Instructor Day/Time Location
D100 Brenda Davison
Mo, We, Fr 12:30 PM – 1:20 PM
AQ 3182, Burnaby
D101
We 2:30 PM – 3:20 PM
AQ 5016, Burnaby
D102
We 3:30 PM – 4:20 PM
AQ 5016, Burnaby
D103
We 4:30 PM – 5:20 PM
AQ 5016, Burnaby
D104
Th 9:30 AM – 10:20 AM
AQ 5018, Burnaby
D105
Th 10:30 AM – 11:20 AM
AQ 5030, Burnaby
D106
Th 11:30 AM – 12:20 PM
RCB 6125, Burnaby
D107
We 5:30 PM – 6:20 PM
AQ 5016, Burnaby
MATH 308 - Linear Optimization (3)

Linear programming modelling. The simplex method and its variants. Duality theory. Post-optimality analysis. Applications and software. Additional topics may include: game theory, network simplex algorithm, and convex sets. Prerequisite: MATH 150, 151, 154, or 157 and MATH 240 or 232. Quantitative.

Section Instructor Day/Time Location
D100 Luis Goddyn
Mo 2:30 PM – 3:20 PM
We 2:30 PM – 3:20 PM
Fr 2:30 PM – 3:20 PM
AQ 3005, Burnaby
WMC 3260, Burnaby
SWH 10041, Burnaby
D101
Tu 2:30 PM – 3:20 PM
WMC 2830, Burnaby
D102
Tu 3:30 PM – 4:20 PM
TASC2 8500, Burnaby
D103
Tu 4:30 PM – 5:20 PM
AQ 5037, Burnaby
MATH 340 - Algebra II: Rings and Fields (3)

The integers and mathematical proof. Relations and modular arithmetic. Rings and fields, polynomial rings, the Euclidean algorithm. The complex numbers and the fundamental theorem of algebra. Construction of finite fields, primitive elements in finite fields, and their application. Prerequisite: MATH 240 (or MATH 232 with a grade of at least B). Students with credit for MATH 332 may not take this course for further credit. Quantitative.

MATH 345 - Introduction to Graph Theory (3)

Fundamental concepts, trees and distances, matchings and factors, connectivity and paths, network flows, integral flows. Prerequisite: MACM 201 (with a grade of at least B-). Quantitative.

and one of

CMPT 300 - Operating Systems I (3)

This course aims to give the student an understanding of what a modern operating system is, and the services it provides. It also discusses some basic issues in operating systems and provides solutions. Topics include multiprogramming, process management, memory management, and file systems. Prerequisite: CMPT 225 and (MACM 101 or (ENSC 251 and ENSC 252)).

Section Instructor Day/Time Location
D100 Keval Vora
Tu 8:30 AM – 10:20 AM
Th 8:30 AM – 9:20 AM
SWH 10041, Burnaby
SSCC 9002, Burnaby
D200 Harinder Khangura
Mo, We, Fr 11:30 AM – 12:20 PM
SUR 5140, Surrey
E100
Tu, Th 5:30 PM – 6:50 PM
AQ 3003, Burnaby
CMPT 371 - Data Communications and Networking (3)

Data communication fundamentals (data types, rates, and transmission media). Network architectures for local and wide areas. Communications protocols suitable for various architectures. ISO protocols and internetworking. Performance analysis under various loadings and channel error rates. Prerequisite: CMPT 225, (CMPT 150, ENSC 150 or CMPT 295) and MATH 151 (MATH 150). MATH 154 or 157 with a grade of at least B+ may be substituted for MATH 151 (MATH 150).

Section Instructor Day/Time Location
D100 Ryan Shea
Mo 10:30 AM – 12:20 PM
We 10:30 AM – 11:20 AM
AQ 3159, Burnaby
AQ 3159, Burnaby
D200 Balbir Gill
Mo, We, Fr 4:30 PM – 5:20 PM
BLU 9660, Burnaby

and one of

CMPT 361 - Introduction to Computer Graphics (3)

This course provides an introduction to the fundamentals of computer graphics. Topics include graphics display and interaction hardware, basic algorithms for 2D primitives, anti-aliasing, 2D and 3D geometrical transformations, 3D projections/viewing, Polygonal and hierarchical models, hidden-surface removal, basic rendering techniques (color, shading, raytracing, radiosity), and interaction techniques. Prerequisite: CMPT 225 and MATH 232 or 240.

Section Instructor Day/Time Location
D100 Richard Zhang
Mo 3:30 PM – 4:20 PM
We 3:30 PM – 4:20 PM
Fr 3:30 PM – 4:20 PM
AQ 3159, Burnaby
AQ 3005, Burnaby
SWH 10041, Burnaby
CMPT 379 - Principles of Compiler Design (3)

This course covers the key components of a compiler for a high level programming language. Topics include lexical analysis, parsing, type checking, code generation and optimization. Students will work in teams to design and implement an actual compiler making use of tools such as lex and yacc. Prerequisite: MACM 201, (CMPT 150, CMPT 295 or ENSC 215) and CMPT 225.

Section Instructor Day/Time Location
D100 Thomas Shermer
Tu 11:30 AM – 1:20 PM
Th 11:30 AM – 12:20 PM
BLU 9660, Burnaby
BLU 9660, Burnaby

and one of

MATH 309 - Continuous Optimization (3)

Theoretical and computational methods for investigating the minimum of a function of several real variables with and without inequality constraints. Applications to operations research, model fitting, and economic theory. Prerequisite: MATH 232 or 240, and 251. Quantitative.

MATH 310 - Introduction to Ordinary Differential Equations (3)

First-order differential equations, second- and higher-order linear equations, series solutions, introduction to Laplace transform, systems and numerical methods, applications in the physical, biological and social sciences. Prerequisite: MATH 152; or MATH 155/158 with a grade of at least B, MATH 232 or 240. Quantitative.

Section Instructor Day/Time Location
E100 Razvan Fetecau
Mo, We 4:30 PM – 5:50 PM
AQ 3005, Burnaby
E101
Tu 9:30 AM – 10:20 AM
WMC 2830, Burnaby
E102
Tu 10:30 AM – 11:20 AM
WMC 2532, Burnaby
E103
Tu 11:30 AM – 12:20 PM
WMC 3220, Burnaby
E104
Mo 6:00 PM – 6:50 PM
WMC 2830, Burnaby

And additional course work to total 27 upper division MATH units and 27 upper division CMPT units including core requirements. MACM courses are counted in an alternating fashion towards the MATH and CMPT requirements, starting with the first MACM course completed counting towards either MATH or CMPT. Eighteen units must be completed at the 400 division or higher, including at least six units each of CMPT and MATH.

Students are encouraged to take either

CMPT 498 - Honours Research Project (6)

Students must submit a proposal to the Undergraduate Chair, including the name and signature of the supervising faculty member(s). Students must complete a project report and make a project presentation. This course can satisfy the research project requirements for Computing Science honours students. Prerequisite: Students must have completed 90 units, including 15 units of upper division CMPT courses, and have a GPA of at least 3.00. The proposal must be submitted to the Undergraduate Chair at least 15 days in advance of the term. The proposal must be signed by the supervisor(s) and the undergraduate chair.

or both of

MATH 498 - Communication and Research Skills in the Mathematical Sciences (1)

Students will develop skills required for mathematical research. This course will focus on communication in both written and oral form. Students will write documents and prepare presentations in a variety of formats for academic and non-academic purposes. The LaTeX document preparation system will be used. Course will be given on a pass/fail basis. Corequisite: MATH 499W.

MATH 499W - Honours Research Project (5)

An honours research project in mathematics is an original presentation of an area or problem in mathematics. A typical project is an original synthesis of knowledge generated from students research experience. A project can contain substantive, original mathematics, but need not. The presentation consists of a written report and an oral presentation both of which must be completed before the end of the exam period. Prerequisite: 18 credits of upper division MATH or MACM courses. Must be in an honours program with a GPA of at least 3.0. Corequisite: MATH 498. Writing.

Other Requirements

Of the total 120 units required for honours, at least 60 must be from the upper division.

The program is subject to Faculty of Science and University regulations. Course and prerequisite admission is subject to departmental requirements. MACM major graduation is contingent upon a cumulative grade point average (CGPA) and upper division grade point average (UDGPA) of 3.00 or better. Students must also achieve a 3.00 or better CGPA and UDGPA in each of the CMPT, MACM and MATH designations.

Admission, continuation and graduation in the MACM honours is contingent upon 3.00 or better on all relevant GPAs. Faculty of Applied Sciences residency requirements appy to the computing science courses used toward the program.

Co-operative Education and Work Experience

All computing science students are strongly encouraged to explore the opportunities that Work Integrated Learning (WIL) can offer. Please contact a computing science or mathematics co-op advisor during the first year of studies to ensure that you have all of the necessary courses and information to help plan for a successful co-op experience.

Visit http://www.cs.sfu.ca/undergraduate/co-op.html for more computing science information, or for mathematics, http://www.sfu.ca/coop/contact#science.

University Honours Degree Requirements

Students must also satisfy University degree requirements for degree completion.

Writing, Quantitative, and Breadth Requirements

Students admitted to Simon Fraser University beginning in the fall 2006 term must meet writing, quantitative and breadth requirements as part of any degree program they may undertake. See Writing, Quantitative, and Breadth Requirements for university-wide information.

WQB Graduation Requirements

A grade of C- or better is required to earn W, Q or B credit

Requirement

Units

Notes
W - Writing

6

Must include at least one upper division course, taken at Simon Fraser University within the student’s major subject
Q - Quantitative

6

Q courses may be lower or upper division
B - Breadth

18

Designated Breadth Must be outside the student’s major subject, and may be lower or upper division
6 units Social Sciences: B-Soc
6 units Humanities: B-Hum
6 units Sciences: B-Sci

6

Additional Breadth 6 units outside the student’s major subject (may or may not be B-designated courses, and will likely help fulfil individual degree program requirements)

Students choosing to complete a joint major, joint honours, double major, two extended minors, an extended minor and a minor, or two minors may satisfy the breadth requirements (designated or not designated) with courses completed in either one or both program areas.

 

Residency Requirements and Transfer Credit

  • At least half of the program's total units must be earned through Simon Fraser University study.
  • At least two thirds of the program's total upper division units must be earned through Simon Fraser University study.

Please see Faculty of Applied Sciences Residency Requirements for further information.

Elective Courses

In addition to the courses listed above, students should consult a Mathematics or Computing Science advisor to plan the remaining required elective courses.