Please note:
To view the current Academic Calendar go to www.sfu.ca/students/calendar.html
Mathematics Major
This program leads to a bachelor of science (BSc) degree.
Prerequisite Grade Requirement
To enroll in a course offered by the Department of Mathematics, a student must obtain a grade of C or better in each prerequisite course. Some courses may require higher prerequisite grades. Check the MATH course’s Calendar description for details.
Students will not normally be permitted to enroll in any course for which a D grade or lower was obtained in any prerequisite. No student may complete, for further credit, any course offered by the Department of Mathematics which is a prerequisite for a course the student has already completed with a grade of C or higher, without permission of the department.
Grade Requirements
In the courses used to satisfy the upper division requirements, a grade point average (GPA) of at least 2.00 is required. In addition, University regulations require a cumulative GPA of at least 2.00 and an upper division GPA of at least 2.00. These averages are computed on all courses completed at the University. See Grade Point Averages Needed for Graduation.
Program Requirements
Students complete 120 units, as specified below.
Lower Division Requirements
Students complete
both of
An elementary introduction to computing science and computer programming, suitable for students with little or no programming background. Students will learn fundamental concepts and terminology of computing science, acquire elementary skills for programming in a highlevel language and be exposed to diverse fields within, and applications of computing science. Topics will include: pseudocode, data types and control structures, fundamental algorithms, computability and complexity, computer architecture, and history of computing science. Treatment is informal and programming is presented as a problemsolving tool. Prerequisite: BC Math 12 or equivalent is recommended. Students with credit for CMPT 102, 128, 130 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129, 130 or 135 first may not then take this course for further credit. Quantitative/BreadthScience.
Section  Instructor  Day/Time  Location 

D100 
Diana Cukierman 
Mo, We, Fr 9:30 AM – 10:20 AM 
RCB IMAGTH, Burnaby 
D200 
Diana Cukierman 
Mo, We, Fr 1:30 PM – 2:20 PM 
WMC 3520, Burnaby 
D400 
Bobby Chan 
Mo, We, Fr 8:30 AM – 9:20 AM 
SRYE 1002, Surrey 
D401 
Mo 9:30 AM – 10:20 AM 
SRYE 4024, Surrey 

D402 
Mo 10:30 AM – 11:20 AM 
SRYE 4024, Surrey 

D403 
Mo 11:30 AM – 12:20 PM 
SRYE 4024, Surrey 

D404 
Mo 12:30 PM – 1:20 PM 
SRYE 4024, Surrey 

D405 
Mo 1:30 PM – 2:20 PM 
SRYE 4024, Surrey 

D407 
Mo 3:30 PM – 4:20 PM 
SRYE 4024, Surrey 

E100 
Mo, We, Fr 4:30 PM – 5:20 PM 
SSCK 9500, Burnaby 
A second course in computing science and programming intended for students studying mathematics, statistics or actuarial science and suitable for students who already have some background in computing science and programming. Topics include: a review of the basic elements of programming: use and implementation of elementary data structures and algorithms; fundamental algorithms and problem solving; basic objectoriented programming and software design; computation and computabiiity and specification and program correctness. Prerequisite: CMPT 102 or CMPT 120. Students with credit for CMPT 125 or 135 may not take this course for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Janice Regan 
Mo, We, Fr 3:30 PM – 4:20 PM 
SSCC 9002, Burnaby 
D101 
We 9:30 AM – 10:20 AM 
ASB 9838, Burnaby 

D102 
We 10:30 AM – 11:20 AM 
ASB 9838, Burnaby 

D103 
We 11:30 AM – 12:20 PM 
ASB 9838, Burnaby 

D104 
We 12:30 PM – 1:20 PM 
ASB 9838, Burnaby 

D105 
We 1:30 PM – 2:20 PM 
ASB 9838, Burnaby 

D106 
We 2:30 PM – 3:20 PM 
ASB 9838, Burnaby 
(Students transferring into a math program should contact the math undergraduate advisor if they have already completed equivalent courses.)
or both of
An introduction to computing science and computer programming, using a systems oriented language, such as C or C++. This course introduces basic computing science concepts. Topics will include: elementary data types, control structures, functions, arrays and strings, fundamental algorithms, computer organization and memory management. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, or 157). Students with credit for CMPT 102, 120, 128 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129 or 135 first may not then take this course for further credit. Quantitative/BreadthScience.
A second course in systemsoriented programming and computing science that builds upon the foundation set in CMPT 130 using a systemsoriented language such as C or C++. Topics: a review of the basic elements of programming; introduction to objectoriented programming (OOP); techniques for designing and testing programs; use and implementation of elementary data structures and algorithms; introduction to embedded systems programming. Prerequisite: CMPT 130. Students with credit for CMPT 125, 126, or 129 may not take this course for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Toby Donaldson 
Mo, We, Fr 2:30 PM – 3:20 PM 
SRYC 2600, Surrey 
D101 
Th 9:30 AM – 10:20 AM 
SRYE 4013, Surrey 

D102 
Th 10:30 AM – 11:20 AM 
SRYE 4013, Surrey 

D103 
Th 11:30 AM – 12:20 PM 
SRYE 4013, Surrey 

D104 
Th 12:30 PM – 1:20 PM 
SRYE 4013, Surrey 

D105 
Fr 1:30 PM – 2:20 PM 
SRYE 3024, Surrey 

D106 
Th 5:30 PM – 6:30 PM 
SRYE 4013, Surrey 
and all of
Introduction to counting, induction, automata theory, formal reasoning, modular arithmetic. Prerequisite: BC Math 12 (or equivalent), or any of MATH 100, 150, 151, 154, 157. Quantitative/BreadthScience.
Section  Instructor  Day/Time  Location 

D100 
Ryan McBride 
Mo, We, Fr 9:30 AM – 10:20 AM 
WMC 3520, Burnaby 
D101 
Mo 11:30 AM – 12:20 PM 
BLU 10901, Burnaby 

D102 
Mo 12:30 PM – 1:20 PM 
BLU 10901, Burnaby 

D103 
Mo 1:30 PM – 2:20 PM 
AQ 5035, Burnaby 

D104 
Mo 2:30 PM – 3:20 PM 
RCB 5120, Burnaby 

D105 
Tu 1:30 PM – 2:20 PM 
AQ 5007, Burnaby 

D106 
Tu 2:30 PM – 3:20 PM 
RCB 5118, Burnaby 

D107 
Tu 3:30 PM – 4:20 PM 
RCB 5118, Burnaby 

D108 
Tu 4:30 PM – 5:20 PM 
AQ 5035, Burnaby 

D200 
Harinder Khangura 
Mo, We, Fr 9:30 AM – 10:20 AM 
SRYC 5280, Surrey 
D201 
We 10:30 AM – 11:20 AM 
SRYC 5060, Surrey 

D202 
We 11:30 AM – 12:20 PM 
SRYC 5060, Surrey 

D203 
We 12:30 PM – 1:20 PM 
SRYC 5060, Surrey 

D204 
We 1:30 PM – 2:20 PM 
SRYC 5060, Surrey 

D205 
We 2:30 PM – 3:20 PM 
SRYC 5060, Surrey 

D206 
We 3:30 PM – 4:20 PM 
SRYC 5060, Surrey 
A continuation of MACM 101. Topics covered include graph theory, trees, inclusionexclusion, generating functions, recurrence relations, and optimization and matching. Prerequisite: MACM 101 or (ENSC 251 and one of MATH 232 or MATH 240). Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Jamie Mulholland 
Mo, We, Fr 12:30 PM – 1:20 PM 
EDB 7618, Burnaby 
D400 
Mo, We, Fr 8:30 AM – 9:20 AM 
SRYC 2600, Surrey 

D500 
Mo, We, Fr 12:30 PM – 1:20 PM 
AQ 3182, Burnaby 

OP01  TBD  
OP02  TBD  
OP03  TBD 
Using a mathematical software package for doing calculations in linear algebra. Development of computer models that analyze and illustrate applications of linear algebra. All calculations and experiments will be done in the Matlab software package. Topics include: largescale matrix calculations, experiments with cellular automata, indexing, searching and ranking pages on the internet, population models, data fitting and optimization, image analysis, and cryptography. Prerequisite: One of CMPT 102, 120, 126, 128 or 130 and one of MATH 150, 151, 154 or 157 and one of MATH 232 or 240. MATH 232 or 240 can be taken as corequisite. Students in excess of 80 units may not take MACM 203 for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Petr Lisonek 
Tu 2:30 PM – 3:20 PM 
AQ 4150, Burnaby 
D101 
We 2:30 PM – 3:20 PM 
AQ 3148.1, Burnaby 

D102 
We 3:30 PM – 4:20 PM 
AQ 3148.1, Burnaby 

D103 
We 4:30 PM – 5:20 PM 
AQ 3148.1, Burnaby 
Using a mathematical software package for doing computations from calculus. Development of computer models that analyze and illustrate applications of calculus. All calculations and experiments will be done in the Maple software package. Topics include: graphing functions and data, preparing visual aids for illustrating mathematical concepts, integration, Taylor series, numerical approximation methods, 3D visualization of curves and surfaces, multidimensional optimization, differential equations and disease spread models. Prerequisite: One of CMPT 102, 120, 126, 128 or 130 and MATH 251. MATH 251 can be taken as a corequisite. Students in excess of 80 units may not take MACM 204 for further credit. Quantitative.
Mathematical induction. Limits of real sequences and real functions. Continuity and its consequences. The mean value theorem. The fundamental theorem of calculus. Series. Prerequisite: MATH 152; or MATH 155 or 158 with a grade of B. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Vijay Singh 
Mo, We, Fr 1:30 PM – 2:20 PM 
AQ 3005, Burnaby 
D101 
Th 2:30 PM – 3:20 PM 
WMC 2830, Burnaby 

D102 
Th 3:30 PM – 4:20 PM 
WMC 2830, Burnaby 

D103 
Th 4:30 PM – 5:20 PM 
WMC 2830, Burnaby 
Rectangular, cylindrical and spherical coordinates. Vectors, lines, planes, cylinders, quadric surfaces. Vector functions, curves, motion in space. Differential and integral calculus of several variables. Vector fields, line integrals, fundamental theorem for line integrals, Green's theorem. Prerequisite: MATH 152; or MATH 155 or MATH 158 with a grade of at least B. Recommended: It is recommended that MATH 240 or 232 be taken before or concurrently with MATH 251. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
David Muraki 
Mo, We, Fr 8:30 AM – 9:20 AM 
AQ 3181, Burnaby 
OP01  TBD 
Basic laws of probability, sample distributions. Introduction to statistical inference and applications. Prerequisite: or Corequisite: MATH 152 or 155 or 158. Students wishing an intuitive appreciation of a broad range of statistical strategies may wish to take STAT 100 first. Quantitative.
Section  Instructor  Day/Time  Location 

C900 
Tim Swartz 
Distance Education  
D100 
Scott Pai 
Mo, We, Fr 9:30 AM – 10:20 AM 
SSCC 9002, Burnaby 
D900 
Scott Pai 
Tu 8:30 AM – 10:20 AM Th 8:30 AM – 9:20 AM 
SRYC 2750, Surrey SRYC 2750, Surrey 
OP01  TBD  
OP09  TBD 
and one of
Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Topics as for Math 151 with a more extensive review of functions, their properties and their graphs. Recommended for students with no previous knowledge of Calculus. In addition to regularly scheduled lectures, students enrolled in this course are encouraged to come for assistance to the Calculus Workshop (Burnaby), or Math Open Lab (Surrey). Prerequisite: PreCalculus 12 (or equivalent) with a grade of at least B+, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 151, 154 or 157 may not take MATH 150 for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Veselin Jungic 
Mo, We, Fr 8:30 AM – 9:20 AM 
AQ 3182, Burnaby 
D101 
Tu 8:30 AM – 9:20 AM 
WMC 3535, Burnaby 

D102 
Tu 9:30 AM – 10:20 AM 
WMC 3535, Burnaby 

D103 
We 2:30 PM – 3:20 PM 
WMC 3535, Burnaby 

D104 
We 1:30 PM – 2:20 PM 
WMC 3535, Burnaby 

D200 
Natalia Kouzniak 
Mo, We, Fr 11:30 AM – 12:20 PM 
SRYC 3170, Surrey 
D201 
We 1:30 PM – 2:20 PM 
SRYC 3240, Surrey 

D202 
We 2:30 PM – 3:20 PM 
SRYC 3240, Surrey 

OP01  TBD  
OP02  TBD 
Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Logarithmic and exponential functions, trigonometric functions, inverse functions. Limits, continuity, and derivatives. Techniques of differentiation, including logarithmic and implicit differentiation. The Mean Value Theorem. Applications of differentiation including extrema, curve sketching, Newton's method. Introduction to modeling with differential equations. Polar coordinates, parametric curves. Prerequisite: PreCalculus 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.
Designed for students specializing in the biological and medical sciences. Topics include: limits, growth rate and the derivative; elementary functions, optimization and approximation methods, and their applications; mathematical models of biological processes. Prerequisite: PreCalculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 151 or 157 may not take MATH 154 for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Matthew DeVos 
Mo, We, Fr 8:30 AM – 9:20 AM 
SSCB 9200, Burnaby 
OP01  TBD 
Designed for students specializing in business or the social sciences. Topics include: limits, growth rate and the derivative; logarithmic, exponential and trigonometric functions and their application to business, economics, optimization and approximation methods; introduction to functions of several variables with emphasis on partial derivatives and extrema. Prerequisite: PreCalculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 151 or 154 may not take MATH 157 for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Mo, We, Fr 11:30 AM – 12:20 PM 
AQ 3182, Burnaby 

D200 
Natalia Kouzniak 
Mo, We, Fr 12:30 PM – 1:20 PM 
SRYC 5280, Surrey 
OP01  TBD  
OP02  TBD 
and one of
Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. Firstorder separable differential equations and growth models. Sequences and series, series tests, power series, convergence and applications of power series. Prerequisite: MATH 150 or 151; or MATH 154 or 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take this course for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Jessica Stockdale 
Mo, We, Fr 8:30 AM – 9:20 AM 
SSCC 9001, Burnaby 
D200 
Mo, We, Fr 11:30 AM – 12:20 PM 
SRYE 1002, Surrey 

D300 
Brenda Davison 
Mo, We, Fr 8:30 AM – 9:20 AM 
WMC 3253, Burnaby 
OP01  TBD  
OP02  TBD 
Designed for students specializing in the biological and medical sciences. Topics include: the integral, partial derivatives, differential equations, linear systems, and their applications; mathematical models of biological processes. Prerequisite: MATH 150, 151 or 154; or MATH 157 with a grade of at least B. Students with credit for MATH 152 or 158 may not take this course for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Luis Goddyn 
Mo, We, Fr 8:30 AM – 9:20 AM 
RCB IMAGTH, Burnaby 
D200 
Mo, We, Fr 9:30 AM – 10:20 AM 
SRYC 2600, Surrey 

OP01  TBD  
OP02  TBD 
Designed for students specializing in business or the social sciences. Topics include: theory of integration, integration techniques, applications of integration; functions of several variables with emphasis on double and triple integrals and their applications; introduction to differential equations with emphasis on some special firstorder equations and their applications; sequences and series. Prerequisite: MATH 150 or 151 or 154 or 157. Students with credit for MATH 152 or 155 may not take MATH 158 for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

E100 
Petra Menz 
Mo 4:30 PM – 5:20 PM We 4:30 PM – 6:20 PM 
SSCB 9201, Burnaby SSCB 9200, Burnaby 
OP01  TBD 
and one of
Linear equations, matrices, determinants. Introduction to vector spaces and linear transformations and bases. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. An emphasis on applications involving matrix and vector calculations. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 240 make not take this course for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Mo, We, Fr 11:30 AM – 12:20 PM 
SSCC 9001, Burnaby 

D200 
Mo, We, Fr 9:30 AM – 10:20 AM 
SRYE 1002, Surrey 

OP01  TBD  
OP02  TBD 
Linear equations, matrices, determinants. Real and abstract vector spaces, subspaces and linear transformations; basis and change of basis. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. Applications. Subject is presented with an abstract emphasis and includes proofs of the basic theorems. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 232 cannot take this course for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Stephen Choi 
Mo, We, Fr 11:30 AM – 12:20 PM 
AQ 3159, Burnaby 
OP01  TBD 
+ The following substitutions are also permitted. They may not also be used to satisfy the upper division requirements below.
MACM 409  Numerical Linear Algebra: Algorithms, Implementation and Applications (3) for MACM 203.
MACM 401  Introduction to Computer Algebra (3) for MACM 204.
MACM 442  Cryptography (3) for MACM 204.
* strongly recommended
** with a B grade or better
Upper Division Requirements
Students complete a minimum of 30 program units, including the 15 outlined below.
The integers, fundamental theorem of arithmetic. Equivalence relations, modular arithmetic. Univariate polynomials, unique factorization. Rings and fields. Units, zero divisors, integral domains. Ideals, ring homomorphisms. Quotient rings, the ring isomorphism theorem. Chinese remainder theorem. Euclidean, principal ideal, and unique factorization domains. Field extensions, minimal polynomials. Classification of finite fields. Prerequisite: MATH 240 (or MATH 232 with a grade of at least B). Students with credit for MATH 332 may not take this course for further credit. Quantitative.
and one of
Structures and algorithms, generating elementary combinatorial objects, counting (integer partitions, set partitions, Catalan families), backtracking algorithms, branch and bound, heuristic search algorithms. Prerequisite: MACM 201 (with a grade of at least B). Recommended: knowledge of a programming language. Quantitative.
Fundamental concepts, trees and distances, matchings and factors, connectivity and paths, network flows, integral flows. Prerequisite: MACM 201 (with a grade of at least B). Quantitative.
Model building using integer variables, computer solution, relaxations and lower bounds, heuristics and upper bounds, branch and bound algorithms, cutting plane algorithms, valid inequalities and facets, branch and cut algorithms, Lagrangian duality, column generation of algorithms, heuristics algorithms and analysis. Prerequisite: MATH 308. Quantitative.
Design theory: Steiner triple systems, balanced incomplete block designs, latin squares, finite geometries. Enumeration: generating functions. Burnside's Lemma, Polya counting. Prerequisite: MATH 340 or 332, and MACM 201 (with a grade of at least B). Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Petr Lisonek 
Mo, We, Fr 10:30 AM – 11:20 AM 
WMC 2830, Burnaby 
An introduction to the theory and practice of errorcorrecting codes. Topics will include finite fields, polynomial rings, linear and nonlinear codes, BCH codes, convolutional codes, majority logic decoding, weight distribution of codes, and bounds on the size of codes. Prerequisite: MATH 340 or 332. Quantitative.
and one of
Sequences and series of functions, topology of sets in Euclidean space, introduction to metric spaces, functions of several variables. Prerequisite: MATH 242 and 251. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Weiran Sun 
Mo, We, Fr 1:30 PM – 2:20 PM 
AQ 4120, Burnaby 
D101 
Th 12:30 PM – 1:20 PM 
AQ 5030, Burnaby 
and one of
Linear Algebra. Vector space and matrix theory. Prerequisite: MATH 340 or 332 or permission of the instructor. Students with credit for MATH 438 may not take this course for further credit. Quantitative.
Finite groups and subgroups. Cyclic groups and permutation groups. Cosets, normal subgroups and factor groups. Homomorphisms and isomorphisms. Fundamental theorem of finite abelian groups. Sylow theorems. Prerequisite: MATH 340 or 342 or 332. Students with credit for MATH 339 may not take this course for further credit.
Section  Instructor  Day/Time  Location 

D100 
Amarpreet Rattan 
Mo, We, Fr 3:30 PM – 4:20 PM 
WMC 2810, Burnaby 
D101 
Tu 12:30 PM – 1:20 PM 
AQ 4140, Burnaby 
and one of
Firstorder differential equations, second and higherorder linear equations, series solutions, introduction to Laplace transform, systems and numerical methods, applications in the physical, biological and social sciences. Prerequisite: MATH 152; or MATH 155/158 with a grade of at least B, MATH 232 or 240. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Brenda Davison 
Mo, We, Fr 1:30 PM – 2:20 PM 
SSCB 9200, Burnaby 
D101 
Tu 9:30 AM – 10:20 AM 
WMC 2830, Burnaby 

D102 
Tu 10:30 AM – 11:20 AM 
WMC 2830, Burnaby 

D103 
Tu 11:30 AM – 12:20 PM 
WMC 2830, Burnaby 

D104 
Tu 4:30 PM – 5:20 PM 
WMC 2830, Burnaby 
A presentation of the problems commonly arising in numerical analysis and scientific computing and the basic methods for their solutions. Prerequisite: MATH 152 or 155 or 158, and MATH 232 or 240, and computing experience. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
John Stockie 
Mo, We, Fr 12:30 PM – 1:20 PM 
WMC 3520, Burnaby 
D101 
We 2:30 PM – 3:20 PM 
WMC 2830, Burnaby 

D102 
We 3:30 PM – 4:20 PM 
WMC 2830, Burnaby 

D103 
We 4:30 PM – 5:20 PM 
WMC 2830, Burnaby 

D104 
Th 9:30 AM – 10:20 AM 
WMC 2830, Burnaby 

D105 
Th 10:30 AM – 11:20 AM 
WMC 2830, Burnaby 

D106 
Th 11:30 AM – 12:20 PM 
WMC 2830, Burnaby 
The remaining 15 units can be chosen from any upper division MATH or MACM course. Up to 6 of the 15 units can be chosen from the list below.
Any upper division STAT course except for STAT 302, STAT 305, STAT 310, STAT 311, STAT 320, and STAT 403.
Within the 30 program units, students must complete 9 units of 400 level course work, as outlined below (excluding directed studies, job practicum, or honours essay courses):
 6 units of MATH or MACM courses
 3 units of courses from the list of PHYS and STAT courses above (within the 6 allowed units) or 3 units of any other MATH or MACM course.
NOTE: SFU students enrolled in the Accelerated Master's degree program within the Department of Mathematics may apply a maximum of 10 graduate course units, taken while completing the bachelor's degree, towards the upper division undergraduate electives of the bachelor's program and the requirements of the master's degree. For more information go to: http://www.sfu.ca/deangradstudies/future/academicprograms/AcceleratedMasters.html.
Elective Courses
In addition to the courses listed above, students should consult an academic advisor to plan the remaining required elective courses.
Students obtain at least six units in courses offered by the Faculty of Science outside the Department of Mathematics, and the Department of Statistics and Actuarial Science. The courses PHYS 100, BISC 100 and CHEM 110/111 cannot be used to satisfy this requirement.
University Degree Requirements
Students must also satisfy University degree requirements for degree completion.
Writing, Quantitative, and Breadth Requirements
Students admitted to Simon Fraser University beginning in the fall 2006 term must meet writing, quantitative and breadth requirements as part of any degree program they may undertake. See Writing, Quantitative, and Breadth Requirements for universitywide information.
WQB Graduation Requirements
A grade of C or better is required to earn W, Q or B credit
Requirement 
Units 
Notes  
W  Writing 
6 
Must include at least one upper division course, taken at Simon Fraser University within the student’s major subject  
Q  Quantitative 
6 
Q courses may be lower or upper division  
B  Breadth 
18 
Designated Breadth  Must be outside the student’s major subject, and may be lower or upper division 6 units Social Sciences: BSoc 6 units Humanities: BHum 6 units Sciences: BSci 
6 
Additional Breadth  6 units outside the student’s major subject (may or may not be Bdesignated courses, and will likely help fulfil individual degree program requirements) Students choosing to complete a joint major, joint honours, double major, two extended minors, an extended minor and a minor, or two minors may satisfy the breadth requirements (designated or not designated) with courses completed in either one or both program areas. 
Residency Requirements and Transfer Credit
 At least half of the program's total units must be earned through Simon Fraser University study.
 At least two thirds of the program's total upper division units must be earned through Simon Fraser University study.