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Abstract—Object counting methods rely on density maps,
which are heatmaps produced by placing Gaussian density
over object locations. However, density maps are expensive
to collect. To reduce the annotation burden, we propose a
form of weak supervision that only requires object-based
pairwise image rankings. These annotations can be collected
rapidly with a single click per image pair and supply a
weak signal for object quantity. However, a model learn to
fit spurious patterns that satisfy the ranking constraint but
do not rely on the objects. To encourage the network to
solve the ranking constraints by localizing objects, we propose
adversarial density map estimation. This method regularizes
a ranking network’s intermediate feature representation such
that it corresponds to a plausible density map. We demonstrate
the effectiveness of our method on several benchmark object
counting datasets, and show results with a performance that
approaches that of fully-supervised methods using data that
can be collected with a fraction of the annotation burden.
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The object counting problem involves enumerating the
number of objects within an image, which has broad ap-
plicability across several domains such as wildlife popu-
lation monitoring [1], crowd analysis [2]–[7], and traffic
analysis [8]. Different methods have approached the problem
using annotations strategies such as bounding boxes [9],
[10], global object counts [11], inter-image ranking [12],
and density maps [13]. Density maps tend to provide the best
performance on the object counting task [13]–[15]. Density
maps provide object counts via localization, but they localize
objects with Gaussian blobs rather than bounding boxes.

In addition to performance considerations, each of these
annotation strategies carry their own per-annotation cost or
labor burden. Figure 2 highlights the relative annotation bur-
den for the most relevant annotation strategies. By including
this additional consideration, we can compare annotation
strategies by their compromise between test time perfor-
mance and training time annotation burden. Despite their
respective performance, both density map and global count
annotations tend to carry a high annotation burden [15]. This
provides motivation to seek an alternative annotation type
with a favorable compromise between burden and perfor-
mance. We circumvent the burden of previous annotation
types by introducing pairwise inter-image ranking, a simple
form of annotation that can be rapidly collected.

Pairwise inter-image ranking is a novel binary valued
annotation that orders two different images based on their
per-image object counts. These annotations provide a weak

signal for object quantity by creating an object-based par-
tial ordering of the available images. Previous work by
Liu et al [12] on intra-image ranking has demonstrated
that image ranking can be an effective training signal for
semi-supervised counting problems. This previous work
automatically collected intra-image ranking annotations by
leveraging the fact that the object count of a sub-image
crop cannot exceed that of the whole image. Liu et al.
used this relationships as an additional unsupervised training
signal to improve the results of methods trained using fully-
supervised density map. However, while free to collect, Liu
et al. demonstrated that a model trained using only intra-
image ranking annotations performs significantly worse. By
comparison, we demonstrate that our proposed inter-image
ranking annotations perform well on their own, without any
additional supervisory signal.

The major technical challenge in exploiting our inter-
image ranking annotation formulation is finding a way to
extract counts and relevant locations given only rankings. To
this end, we propose an adversarial strategy for regularizing
the penultimate representation of a ranking network to have
the properties of a density map by comparing it to a pseudo-
density map distribution. By enforcing that the model must
solve the ranking problem using plausible density maps, we
argue that this strategy forces the model to solve the ranking
sub-task by detecting re-occurring objects that can satisfy all
of the ranking constraints. Combined with the weak quantity
signal provided by inter-image pairwise ranking annotations,
this strategy produces a counting and localization model
with acceptable performance as compared with architectures
trained using density maps and global counts annotations. In
summary, we make the following contributions: (1) We pro-
pose object-based pairwise inter-image ranking as a novel,
low-cost annotation strategy for weakly supervised counting,
and demonstrate that it performs comparably with fully
supervised counting methods. (2) We propose adversarial
density map regularization, a novel method for enforcing that
the network learns an internal representation conforming to
the properties of a density map.

I. PREVIOUS WORK

Object Counting with Limited Data.: Object counting
methods perform best when learning from density maps [11],
[13], which carry a high annotation burden. Several methods
have attempted to eliminate this burden. These methods



can be split into 4 categories – semi-supervised, knowledge
transfer, sample selection, and weakly supervised methods.

Semi-supervised counting methods alleviate the annota-
tion burden by including additional unlabelled data; inter-
image ranking introduced an unsupervised ranking loss that
exploits the fact that any image has as many or more
objects than a cropped portion of that image [12], [16].
Other methods [17] have proposed feature learning strate-
gies. Domain transfer methods transfer features between
counting problems; one method [7] proposed learning from
a multi-modal dataset containing both density maps and
global object counts. A recent approach [18] proposed a
few-shot learning strategy using exemplar and density map
pairs, which could be extended to novel object classes.
Active learning methods [19], [20] approach the problem
by finding ways to only label important examples. Weakly
supervised methods attempt to better utilize global counts
as annotations. Recent methods [21], [22] proposed various
regularization terms. One such method introduced a soft-
sorting loss [21], which involved learning from global object
count annotations directly and indirectly. Our method differs
from the above weakly-supervised methods by learning
exclusively from a weaker signal than global object counts.

Ranking as Supervision.: The use of ranking as a train-
ing signal originates within information retrieval research.
RankNet [23], a document retrieval network, emerged as
the first deep learning approach to ranking. However, this
approach has been extended into several computer vision
applications. Facial age estimation [24] has benefited from
pairwise image rankings to learn the ‘amount’ of age in
an image. Pairwise image ranking has also been used to
localize facial attributes [25]. These applications highlight
that ranking plays a significant role in computer vision.

II. PAIRWISE RANKING

A. The Burden of Pairwise Ranking Annotations

Pairwise image ranking is the process of providing a
binary ordering annotation rij for an image pair (xi, xj)
based on the object counts (ci, cj) present in the two
images, where rij ≡ ci ≥ cj . A pairwise ranking train-
ing dataset for N pairs of images is given as Drank =
{(xi, xj), rij}N . We also define an important relationship
between ci and cj , which is the ratio between object counts,
γ = min(ci/cj , cj/ci), where 0 ≤ γ ≤ 1.

Researchers in human psychology have found that humans
can rapidly assess which of two groups of objects has
the most objects if γ is below a threshold [26], [27].
This is known as Weber-Fechner law, which describes the
change in a stimulus necessary for a human to perceive
the difference relative to the existing stimulus [28]. For
the task of pairwise image ranking, researchers [26], [27]
have also found that within 0.75 seconds, untrained adults
are capable of determining which of two images has more
objects, if γ between object count in the two images is

smaller than approximately 9:10 and 10:11 (independent of
the absolute count), i.e, if γ < γ∗, where γ∗ is the Weber-
Fechner ratio with value around 0.9-0.91. We we adopt these
established values as an approximation of the upper bound
on the Weber-Fechner ratio, as the true Weber-Fechner ratio
is likely related to object scale, density, complexity, etc.

Given an approximate upper bound for the Weber-Fechner
ratio, we must now decide on how to handle the case where
a similar number of objects appear in both images, i.e.,
the image pair violates γ < γ∗, and the annotation cost
is expected to increase. One option is to ask an annotator
to count up the objects in both images; however, this is a
costly option. Another option is to permit annotator noise
by requesting that an annotator guess within a certain time
constraint. In the case of random guessing, we will have
a 50% chance of acquiring a correct rank annotation, i.e.,
approximately half of the labels will be correct and the other
half will only be incorrect by a small number of objects.

Figure 1 provides an analysis of the distribution of object
count ratios γ for pairs of images sampled from popular
counting benchmark datasets, which are described further
in section IV-A. To produce the distribution of ratios given
above for a counting dataset {xi, ci}Nc with Nc examples,
we sample all

(
Nc

2

)
pairs and calculate their ratio γ. The

percentage of image pairs that violate γ < γ∗ for the
benchmarks is 7.4-22.8%. So, when Weber-Fechner ranking
label noise is permitted, we expect that half of those, on
average, would be incorrectly annotated, i.e. 3.7-11.4%.

It is well known that label noise is a persistent feature
of many popular datasets [29], with the ImageNet test set
having an error rate of 5.83% and the CIFAR-100 test-set
having an error rate of 5.85%. Given that many popular
benchmarks are noisy, we demonstrate in section IV-D that
this small amount of ranking annotation noise is tolerable.
We are now left to answer the difficult question of how
to extract the counts and estimate the locations of objects
when presented with a weak rank signal that can be rapidly
collected albeit with a small amount of label noise.

B. Beyond Intra-Image Ranking

Previous work on semi-supervised intra-image rank-
ing [12] has demonstrated the value of ranking as a training
signal for counting problems. Given that these annotations
can be collected rapidly and for free, one may reasonably
wonder why we would seek to manually collect ranking an-
notations. The original intra-image ranking method included
two loss terms, a fully-supervised density map regression
term and an intra-image ranking term. This is important,
as the method explicitly requires (costly) annotations that
ground the object counts to the object location.

When paired with fully-supervised density map regres-
sion, the ranking loss provides additional useful weak quan-
tity information. However, when used in isolation, the intra-
image ranking loss no longer receives information related



Figure 1. Density plots showing the distribution of object count ratios γ for objects in pairs of images sampled from each respective benchmark dataset:
(a-c) Trancos, Penguins, and Mall. Mean ratio γ̄ and Weber-Fechner ratio γ∗ are labelled on each plot, providing a quick summary of the annotation
difficulty for each dataset. The percentage of pairs on the right of γ∗ is, 12.6% for Trancos, 7.4% for Penguins, and 22.8% for Mall respectively.

Figure 2. Different types of annotations and their relative burden for training object counting models. (A) Intra-image ranking annotations compare
object counts in an image and a sub-crop of that image. (B) Ours. Inter-image ranking annotations are manually collected and compare object counts
between a diverse set of image pairs. (C) Global object count annotations require a single number per image representing the object count. (D) Density
map annotations require a single dot per object location, and which is converted into a Gaussian blob.

to object identity. Given that the sub-crop contains a subset
of the image-level features contained in the whole image,
there are many trivial solutions that can satisfy the intra-
image ranking constraints. Figure 2 highlights the difference
between inter- and intra-image ranking pairs. Visual inspec-
tion of intra-image ranking pairs reveals plausible spurious
solutions that satisfy the intra-image ranking constraint.
For example, image boundary artifacts such as the trees
in figure 2A, are always less likely to appear in the sub-
crop and the model may overfit to such trivial features.
The authors of [12] empirically verified this observation.
They pre-trained a model using only the intra-image ranking

examples and then fine-tuned the model on fully-supervised
counting examples. They reported that the model pre-trained
using only the ranking signal saw a significant increase in
error when compared to both their proposed semi-supervised
setup and a model pre-trained ImageNet features. Thus, if
we wish to learn explicitly from ranking pairs, we argue that
a move beyond intra-image ranking is necessary. We solve
this problem by introducing inter-image ranking pairs.

III. METHOD

The goal of our method is to develop a model which can
extract object counts given only pairwise image rankings.



Figure 3. Method overview. Pairs of images with count based ranking labels are used to train a neural network. Each image xi and xj are passed to the
generator model fθ and their respective outputs are used to calculate Lrank , which provides the weak object quantity training signal. In addition to this,
we include an adversarial density map generation loss, Lgan, which encourages the output of the generator model to have the properties of a density map.

These annotations contain a weak signal for object quantity,
which we use to train a neural network, f(xi; θ), outlined
in Figure 3. However, this target alone is not enough to
learn a representation from which we can extract object
counts. First, this target does not require that a model
learn features which correspond to whole object counts.
Second, there are potentially trivial solutions to the ranking
constraints that the model can exploit. We solve this problem
by proposing adversarial density map estimation, a strategy
which structures the intermediate representation of fθ to
have the properties of a density map. By solving the image
ranking constraint using plausible density map proposals,
our model learns to not only count objects but also localize
those objects within an image.

A. Ranking Network

The purpose of the network f(xi; θ) is to extract the
underlying weak object quantity signal from the pairwise
image ranking annotations Drank. As outlined in Figure 3,
our base counting model fθ receives two images as input, xi

and xj , and outputs representations zi, zj ∈ [0, 1]w×h. We
calculate the object counts by taking the integral of each
representation, such that ci =

∑
k,l(zi)kl. We then follow

the strategy proposed in [23] and model the probability that
ci ≥ cj by approximating the true distribution as follows:

prank = P (rij |xi, xj ; θ) = σ(
∑
k,l

(zi)kl − (zj)kl), (1)

where σ is the sigmoid operation and (k, l) are the indices
for the representations zi and zj . Here, we benefit from
the fact that when the difference between zi and zj is
positive, the sigmoid operation outputs a value greater than
0.50. Whereas when the difference is negative, the sigmoid

operation outputs a value less than 0.50. This allows us to
model which of two images in a pair has more objects by
inspecting the magnitudes of the sum over zi and zj . Thus,
by optimizing θ using the following loss function:

Lrank = −Epdata
[log(prank)], (2)

the model must learn to minimize the number of pairwise
inversions (from the ground truth distribution pdata) among
all ranking examples in the training dataset, which creates
a partial ordering of all the images by object count. We
also create a version pdata corrupted by simulated annotator
noise by randomly selecting half of the ground truth labels
rij which violate γ∗ and flipping their labels. In the next
section, we propose an approach to explicitly connect the
output representation to object locations.

B. Adversarial Density Map Generation
Previous empirical results have demonstrated the value of

density maps as a location-based annotation for counting
problems. Density maps are structured such that they place
Gaussian density where objects occur and integrate to the
global count. These properties are useful because they
explicitly connect the detection and counting task. While
we do not have access to density maps, we argue that
optimizing the counting network fθ to propose density maps
as intermediate representations while solving the pairwise
image ranking problem captures some of the useful proper-
ties of density maps. We explore a strategy for structuring
the output representation zi to have these properties.

We first establish a pseudo point map distribution from
which we can randomly sample point maps zpoint ∈
{0, 1}w×h. We convolve zpoint with Kδ , a 2D kernel with
std. dev. δ = 1.5, to generate a pseudo density map:

z̃dmap = Kδ ∗ zpoint. (3)



Given these pseudo density maps, we establish an adversarial
training objective that penalizes the network output zi when
it deviates from the properties of a density map.

Adversarial training [30] is a widely adopted technique
for modeling the underlying generating distribution that
explains a dataset. Our training strategy involves optimizing
two neural networks, our counting network f (termed the
generator) and a discriminator D. The generator is tasked
with generating samples that appear as though they are
sampled from the underlying pseudo density map distribu-
tion. The discriminator is tasked with evaluating whether
a sample came from the pseudo density map distribution
or the generator’s distribution. The generator is optimized
using feedback from the discriminator. We use the LS-GAN
objective function [31], which is given as:

Lf
gan = −Ex

[
D(fθ(xi)− 1)2

]
, (4)

for the generator, and:

LD
gan =− Ez̃dmap

[
(D(z̃dmap)− 1)2

]
+ Ex

[
D(fθ(xi))

2
]
.

(5)

for the discriminator.
To produce the pseudo point map distribution, we uni-

formly sample a total count, cpseudo, for the number of
Gaussian blobs in a particular density map:

cpseudo ∼ U{0,Nc}, (6)

where Nc is a hyper-parameter roughly corresponding to the
estimated maximum object count for the dataset. Then, we
uniformly sample cpseudo co-ordinates:

i, j ∼ U[0,w]×[0,h], (7)

which gives us zpoint by setting all points (i, j) to 1, and
all other points to 0.

IV. EXPERIMENTS

A. Datasets

We benchmark our results on three sparse object counting
datasets, which we consider to be datasets with fewer than
50 objects per image. Intuitively, this setting will be the
most challenging, as there will be a greater potential for
problematic spurious background features which can satisfy
the ranking constraint. By specifically increasing the be
the problem more challenging. TRANCOS [8] is a vehicle
counting dataset containing 1,244 images of 46,796 highly
occluded vehicles in traffic. Penguins [1] is an animal
counting dataset containing around 82,000 images of pen-
guin colonies. Each image contains several dot maps from
different annotators. We use the mixed setting for training
and evaluation. The Mall dataset [2]–[5] is a crowd counting
data containing 2,000 images of over 60,000 pedestrians
in a shopping malls. All of these datasets are challenging
benchmarks as they contain highly occluded objects with a
variety of environmental conditions and scales.

B. Sampling Image Ranking Data

There are presently no well-established image ranking
datasets available for weakly supervised object counting
benchmarking. Given this, all image ranking datasets used
for evaluating our experiments must be curated. We experi-
ment with the object counting datasets outlined above, and
reformulate all of the available datasets as ranking datasets
as follows. Given a counting dataset

Dcount = {xi ∈ Rh,w,d, ci ∈ N}Np

i=0,

where d is the number of channels, ci is the object count in
image xi, and Np is the number of counting examples, we
sample N = 2, 000 image pairs (xi, xj) from Dcount. We
then calculate their pairwise ranking as rij = ci ≥ cj . This
provides us with a curated ranking dataset:

Drank = {(xi, xj)n, (rij)n ≡ (ci ≥ cj)n}Nn=1.

For our experiments, we impose no constraints on the
sampling procedure and generate the training ranking dataset
by simply uniformly sampling examples from the training
dataset. We simulate label noise by randomly selecting half
of the examples in Drank that violate the Weber-Fechner
ratio, and flip their label. Given a dataset which simulates
annotator error for difficult examples, we demonstrate that
our model can even tolerate this noise.

C. Implementation Details

We use ResNet50 [32] as the base architecture for the
counting model fθ. We then generate a density map zi by
up sampling features using transposed convolutions [33]. To
construct the ranking network, we pass two images through
fθ and then we take the sum of the difference between the
respective outputs. The density map estimates, zi and zj , are
passed to the discriminator. The discriminator is comprised
of 5 convolutional layers which downsample the density
map. Then, these features are passed through a final fully
connected layer. Each model for each experiment is trained
for 200 epochs using the Adam optimizer with a batch size
of 32. Wet set the learning rates to 5 × 10−5, 3 × 10−5

and 7 × 10−5 for the Trancos, Mall and Penguins datasets
respectively. Due to the instability of GANs, selecting the
best model is difficult. To mitigate this, we perform early
stopping using the small validation set of 15 examples
annotated with global counts.

D. Results

Ablation of Model Components.: In Table I, we explore
the contribution of each model component to the test error:
(i) Lrank (eq. 2); (ii) Lgan (eq. 5 & 4); and (iii) the ranking
loss with simulated Weber-Fechner annotator noise. We
evaluate each experiment using MAE and R2. MAE is the
mean absolute error and measures the difference between the
predicted count and ground truth count, with a lower score



Figure 4. Qualitative examples of density maps predicted by the baseline model at inference time. Top: Trancos. Middle: Penguins. Bottom: MALL.

corresponds to a better performing model. R2 is the coeffi-
cient of determination, which describes how well the model
fits the data with a higher score corresponding to a better fit.
When only Lgan is included during model training, we find
that the model fails to detect and count objects. This result
is intuitive, as the weak quantity signal is only provided
by Lrank. However, when only Lrank is included during
model training, we find that the model under-performs when
compared to the model trained with both Lrank and Lgan.
This result demonstrates that Lgan contributes an important
training signal when solving the object counting problem
using pairwise image rankings. Interestingly, when noisy
ranking data is used as the source of weak quantity signal,
the model provides a nearly equivalent performance when
compared to the clean ranking annotations. Given that this
noise primarily affects examples that are close in their
underlying count, and given that the noise quantity is small,
we argue that our model is robust to annotator noise. Figure
4 shows qualitative examples of the density map proposals
learned by the network. The network learns to detect the
relevant objects in many cases.

Evaluating the Annotation Burden vs. Error Trade-Off.:
We compare our results with state-of-the-art object counting
methods and we provide an estimate of the annotation
burden for each method. We estimate the annotation burden
for dot-maps and global object counts calculated over the
dataset and compare it to the estimated annotation burden of
our method. To estimate the annotation burden for dot-maps,

we use the per-object annotation time of 1.1 s established
by Cholakkal et al. [15] and multiply this by the number
of objects in the dataset. To estimate the annotation time
for global object counts, we use a slightly more complex
formula, which includes the human ability to rapidly count
objects within the range of 1 to 4, often referred to as the
subitizing range. Saltzman et al. [41] established a counting
speed of 0.1 s for each object within the subitizing range
and 0.35 s for each additional object outside of the range.
However, the participants in this experiment were only asked
to count simple shapes. Cholakkal et al. [15] evaluated hu-
man counting in complex scenes and established a counting
speed of 0.5 s within the subitizing range and 1.0 s for
objects outside of this range. We use these two measures
to create a range for our estimate of object counting speed

Table I
ABLATION STUDY OF MODEL MODIFIED BY REMOVING DIFFERENT

LOSS COMPONENTS. RANKING NOISE REFERS TO THE INCLUSION OF
WEBER-FECHNER BASED SIMULATED ANNOTATOR NOISE.

Method Trancos Mall Penguins

MAE R2 MAE R2 MAE R2

Lrank + Lgan 5.22 0.81 2.60 0.68 7.22 0.58

Lgan 13.19 -0.15 4.80 0.00 13.70 -0.08

Lrank 9.47 0.51 5.46 -0.14 7.72 0.58

Lrank + Lgan
+ranking noise

5.42 0.80 2.62 0.69 7.33 0.57



Table II
TEST ERROR AND ANNOTATION TIME FOR SOTA COUNTING METHODS

ON THE TRANCOS CAR COUNTING DATASET. WHEN METHODS USE
THE DOT-MAPS, THEIR ANNOTATION TIMES ARE EQUIVALENT.

Method Supervision Est. Annotation Time MAE

Hydra CCNN [34] Dot-map 551 min 10.99

FCN-MT [35] Dot-map 551 min 5.31

FCN-HA [36] Dot-map 551 min 4.20

LC-PSPNet [37] Dot-map 551 min 3.57

CSRNet [38] Dot-map 551 min 3.56

SPN [39] Dot-map 551 min 3.35

ADSCNet [14] Dot-map 551 min 2.60

Glance [11] Counts 161 min - 474 min 7.00

Adv. Dmap (Ours) Pairwise Rank 25 min 5.42

Table III
TEST ERROR AND ANNOTATION TIME FOR SOTA COUNTING METHODS

ON THE MALL CROWD COUNTING DATASET.

Method Supervision Est. Annotation Time MAE

CNN-Boosting [40] Dot-map 433 min 2.01

LC-PSPNet [37] Dot-map 433 min 2.01

AL-AC [20] 10% Dot-map 43 min 3.80

Adv. Dmap (Ours) Pairwise Rank 25 min 2.62

and assign a lower and upper bounds for the counting time
of [0.1, 0.5] seconds for each object within the subitizing
range and [0.35, 1.0] seconds for objects outside of the range.
To calculate pairwise image ranking speed, we use the per
image-pair ranking time of 0.75 s established by [26], [27]
and multiply it by the number of image-pairs in our ranking
dataset. This calculation assumes that annotators noise is
permitted, and annotator are encouraged to prioritize speed
over accuracy within the Weber-Fechner ratio.

Table II compares our method to previous state-of-the-
art counting methods evaluated on the TRANCOS dataset,
where we find that our method performs similarly to the
method proposed by [35], despite their method being su-
pervised by dot maps requiring ×22 the annotation time.
More recent methods, such as the method proposed by [14],
outperform ours by a mean error of 2.82 vehicles per images,
where each image contains an average of 38 vehicles. How-
ever, our method requires 4.54% of the annotation time as
the best performing fully supervised methods. We also find
that our method outperforms Glance [11], which learns from
image-level object counts, while also requiring a smaller
annotation burden (by a factor of 15.5% to 5.27%). Likewise,
Table III presents the same comparison evaluated on the
MALL dataset. We find that our method performs com-
parably to current state-of-the-art counting methods, while
requiring a fraction (5.77% to 5.81%) of the annotation
time. The best performing methods outperform ours by a

mean absolute error of 0.61 pedestrians. Further, our method
outperforms the method proposed by [20], which was specif-
ically developed to deal with the annotation burden, while
only requiring a fraction (5.81%) of the annotation time.
These results demonstrate the value of pairwise image-
ranking as a weak object counting signal and the value
of our method for extracting counts while minimizing the
annotation burden.

V. CONCLUSION

We present a solution to the weakly supervised object
counting problem using, for the first time, an approach to
extract object counts and locations from inter-image ranking
annotations. These pairwise image ranking annotations can
be rapidly collected by annotators, requiring only a single
click. We develop a GAN based strategy for regularizing the
network’s intermediate representation such that it proposes
valid density maps. We demonstrate that our method per-
forms well on benchmarks, and approaches the performance
of fully supervised counting methods, while requiring a frac-
tion of the annotation cost. We further show that our method
is robust even in presence of simulated annotator noise.
This work demonstrates the value of exploring novel weak
counting annotation formulations and suggests a direction
forward for solving counting problems in domains where
annotation collection would otherwise be impermissible.
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