Chapter 13





13.1 The Multiple Linear Regression Model





In Chapter 12, we used the simple linear regression model to explain the behavior of a dependent variable (Y) using a single predictor (independent) variable (X). For example, we explained changes in home size by using family income.





In most practical applications, it is reasonable to assume that the behavior of a dependent variable is influenced by several factors. For instance, home size (Y) may be influenced by family income (X1) and years of education (X2). In Chapter 13, we look at statistical models that predict the dependent variable as a linear function of more than one independent variables. By including these additional variables, we should be able to explain more of the variability in the dependent variable. 





A regression model with more than one independent variable is called a multiple linear regression model.  Suppose we want to explain the behavior of an independent variable (Y) using K independent variables. The form of the model is


Yi = a + b1X1 + b2X2 + … + bkXk + e,





and the conditional expectation is given as





E[Y|X1 = x1, X2 = x2, … Xk = xk,] = a + b1x1 + b2x2 + … + bkxk.





This means that if X1 takes on the specific value x1i, X2 takes on the value of x2i, etc., Y will take the value 


a + b1x1 + b2x2 + … + bkxk, since the expected value of the error term is zero.  Once again, the error term is included to provide for deviations due to factors not included the model.





Interpreting the regression coefficients





The intercept coefficient a is the expected value of the dependent variable when all the independent variables take the value 0, i.e.,





E[Y|X1 = 0, X2 = 0, … Xk = 0,] = a 





The partial regression coefficients, b1 , b2, and bk have very important interpretation. Each slope coefficient tells us by how much the dependent variable is expected to change with a 1-unit change in the particular independent variable when all the other variables are held constant. For example, b1 measures the expected change in Y resulting from a 1-unit change in X1 when all the other k-1 independent variables remain constant. 





13.2 Least Squares Estimation





The procedure for the estimation of the parameters of the population multiple regression is identical to the one we used in the simple linear regression. The objective is to find an estimate of the regression equation that best fits the observed data, such that the sum of squared residuals (errors of estimation) is as small as possible. A residual is the discrepancy between the predicted value of the dependent variable and the observed value. In other words, we attempt to find a, b1, b2, …, bk that minimize the sum of squares of errors. Let the estimated equation be





�EMBED Equation.3���





The residual is defined as





e = Y - �EMBED Equation.3���= Y – [a + b1X1 + b2X2 + …, + bkXk],





and the error sum of squares is given as





SSE = �EMBED Equation.3���





13.3 The Standard Assumptions of the Linear Regression Model





The Xs are fixed numbers, or are observations of random variables that are independent of the error terms.


The error terms ei are random variables with mean zero, i.e., E(ei) = 0. This is assumption of normality of the error terms, and is the key assumption behind the linear regression model.


The error terms all have the same variance, i.e., Var(ei)  = E(�EMBED Equation.3���) = �EMBED Equation.3���. This is the assumption of homoscedasticity.


The error terms are statistically independent of (not correlated with) each other, i.e., 


E(ei,ej) = 0 for i �EMBED Equation.3���j. This is the assumption of no autocorrelation.


There is no exact linear correlation between any pair of the independent variables.





13.4 The Gauss-Markov Theorem





Once again, the Gauss-Markov theorem gives a justification for the use of the least squares method, and provides support for its popularity. The theorem states that if all the assumptions hold, then of all possible estimators of a and b that are linear in Y and are unbiased, the least estimators have the smallest variance. By virtue of theorem, the least squares estimators are BLUE.





Estimation of the Error Variance





Recall that the error terms all have a common variance �EMBED Equation.3���. Since we usually have a sample instead of the entire population, this has to be estimated. An unbiased estimate this common variance is 





�EMBED Equation.3��� = �EMBED Equation.3��� = �EMBED Equation.3���.





13.5: Explanatory Power of and the Adjusted R2 





The R2 is calculated in the same way as in the simple linear regression: R2 =�EMBED Equation.3���. It measures the proportion of the variability in Y that has been explained by the variability in the independent variables as a whole. 





The Adjusted R2.





In a multiple regression, the usual R2 is not a good measure of explanatory power when the number of explanatory variables is a large proportion of the number of the sample size, that is, when we have a large k relative to n. The model may appear to fit the data well even when the actual relationship is weak.  Note: the R2 = 1 whenever n = k + 1.





Caution: Avoid using too small a sample size in your regression. As a general rule, use a sample containing at least three times the number of independent variables. In multiple regression, we modify the usual R2 to compensate for the reduction in the sum of squared errors introduced by the addition of more independent variables. We do this by dividing each sum of squares by its degrees of freedom. We call the modified R2 the adjusted R2, denoted by �EMBED Equation.3���.





�EMBED Equation.3���=�EMBED Equation.3���.





The Partial Correlation Coefficient and Partial R2.





The partial correlation between Y and say X1 is a measure of the strength of the linear relationship between Y and, say X1 given that all the other explanatory variables remain constant. 


The square of the partial correlation coefficient is the partial R2. The partial R2 between Y and X1 shows the proportion of the variability in Y that has been explained by its relationship with X1 if all the other variables remain constant. 





The Coefficient of Multiple Correlation





This is the correlation coefficient between the predicted values of Y and the actual observations of Y. It provides a measure of the overall strength of the linear relationship between Y and all the independent variables taken together. The higher the absolute value of the coefficient of multiple correlation, the better is the regression model. The coefficient of multiple correlation is the square root of the R2.


R = �EMBED Equation.3���





13.6: Confidence Intervals and Hypothesis Tests for Regression Coefficients





In section 13.2 we derived point estimates of the parameters of the multiple regression model. We now extend our results to develop confidence intervals tests of hypotheses.





Confidence interval for the Partial Regression Coefficients





If the errors are normally distributed and all the other assumptions hold, then 100(1-a)% confidence interval for the true population partial regression coefficients are given by





bi – tn-k-1,a/2sbi  < bi < bi + tn-k-1,a/2sbi





where�EMBED Equation.3���is the standard error of bi.





Exx:


Given 


n = 25; b1 = 0.237; sb1 = 0.0555; b2 = -0.000249; sb2 = 0.000032.





Obtain a 99% confidence interval for b1 and b2. 





Hypothesis Testing





Given that X2, X3 …are in the model, does X1 contribute any information toward explaining the behavior of the dependent variable? Put another way, is an included explanatory variable a good predictor variable of Y?  Recall that in Chapter 12 when income was the only predictor variable for home size, we employed the t-test to determine whether income was a useful predictor variable for home size, in other words, whether income was a significant explanatory variable. We follow the same procedure in the case of multiple regression to test the effect of the individual variables. If all the assumptions underlying the multiple linear regression model hold, then the random variable





�EMBED Equation.3���





has the t-distribution with (n-k-1) degrees of freedom. n is the total sample size and k the number of independent variables in the model. bi is the estimate of bi. 


The null and alternative hypotheses are:





One tail test, Right: 


H0: bi = b0	or	H0: bi �EMBED Equation.3��� b0





H1: bi > b0








Decision Rule:


Reject H0 if �EMBED Equation.3��� > tn-k-1,a.





One tail test: Left:


H0: bi = b0	or	H0: bi �EMBED Equation.3��� b0





H1: bi < b0





Decision Rule:


Reject H0 if �EMBED Equation.3��� < - tn-k-1,a.





Two  tail test:





H0: bi = b0


H1: bi �EMBED Equation.3��� b0





Decision Rule:


Reject H0 if �EMBED Equation.3��� > tn-k-1,a/2	or	�EMBED Equation.3��� < - tn-k-1,a/2








Example:





A real estate developer suspects that home size (Y) is influenced by family income (X1) family size (X2) and years of education (X3). The estimated multiple linear regression equation for a sample of ten families is





�EMBED Equation.3���= 7.6 + 0.194X1 + 2.34X2 – 0.163X3	R2 = 0.905	�EMBED Equation.3��� = 0.85


			(0.087)       (0.907)   (0.244)





The numbers in brackets are standard errors.





Interpret the partial regression coefficients.


Interpret the coefficient of determination and the adjusted coefficient of determination.


Test the null hypothesis that income does not contribute to the prediction of home size, given that family size and years of education have already been included in the model. Use a = 10%.





H0: b1 = 0


H1: b1 �EMBED Equation.3��� 0


t6,0.05 = 1.943.


t* =�EMBED Equation.3���= 2.21.


Because t* > 1.943 we reject the null hypothesis and conclude that income is a useful predictor variable of home size.


13.7 Tests of Sets of Regression Parameters


In section 13.6, we used t-tests to test for the significance of each of the individual independent variables. It is often necessary to test for some or all of the independent variables as a group. Consider the null hypothesis that all the partial regression coefficients are zero, implying that the model as a whole is not significant, against an alternative that at least, one (but not all) of the independent variables contribute significantly to the prediction of Y. That is,





H0: b1 = b2 = ... = bk = 0.


H1: At least, one bi  �EMBED Equation.3���0 for i = 1, 2, …, k.


If we fail to reject the null hypothesis, then the expected value of the independent variable will reduce to a. The test statistic used to determine whether the entire model is significant is based on a decomposition of the sum of squares. Recall that


SST = SSR + SSE.


The degrees of freedom for SSR is k, the number of independent variables, and the degrees of freedom associated with SSE is (n-k-1). When the null hypothesis is true, the statistic


F * = �EMBED Equation.3���


Follows an F distribution with k numerator degrees of freedom and n-k-1 denominator degrees of freedom. The decision rule is to reject the null hypothesis if F* > Fk,n-k-1,a.


The F statistic can also be calculated as


F *= �EMBED Equation.3���


  In our real estate example, the F-value for the significance of the overall regression is





F =�EMBED Equation.3���= �EMBED Equation.3��� = 19.1


F3,6,.1 = 3.29


In this example, we reject the null hypothesis. The three independent variables, as a group, constitute a good predictor of home size.


The ANOVA Table


A summary of the regression analysis is set out in what is called the analysis of variance (ANOVA) table.


ANALYSIS OF VARIANCE


Source of Variation�
Degrees of Freedom (d.f.)�
Sum of Squares�
Mean Squares (MS)�
F�
�
�
�
�
�
�
�
Regression �
k�
SSR�
�EMBED Equation.3���= MSR�
�EMBED Equation.3����
�
Residual�
n-k-1�
SSE�
�EMBED Equation.3����EMBED Equation.3���= MSE�
�
�
Total �
n-1�
SST�
�
�
�



In our real estate problem, the analysis of variance table is set up as follows:


ANALYSIS OF VARIANCE


Source of Variation�
Degrees of Freedom (d.f.)�
Sum of Squares (SS)�
Mean Squares (MS)�
F�
�
�
�
�
�
�
�
Regression �
3�
237.542�
79.181�
19.1�
�
Residual �
6�
24.858�
4.143�
�
�
Total �
9�
262.400�
�
�
�



Tests on a subset of the regression parameters


Suppose that we have k independent variables and we are interested in testing the joint significance of a subset of say k1 independent variables (k1 < k). The null hypothesis is





H0: b1 = b2 = ... = bk1 = 0.


H1: At least, one bi  �EMBED Equation.3���0 for i = 1, 2, …, k1.





The null hypothesis says that the set of all k1 independent variables do not contribute anything to predicting Y. The procedure for the test is:


Estimate the model with all k independent variables and save the sum of squared errors. Call it SSE. 


Estimate the restricted model, that is, the model without the independent variables you are testing. Save the sum of squared errors from this regression and call it SSE*.


 Calculate the F statistic based on the difference between the two quantities of the sum of squared errors:


F* =�EMBED Equation.3���


Reject the null hypothesis if F* > Fk1,n-k-1,a . If the null hypothesis is rejected, it implies the omitted variables contribute significantly to predicting Y, so we do need them in the model. If we fail to reject the null hypothesis, the implication is that the omitted variables contribute nothing in predicting Y: the restricted model as good as the original model.


Alternatively, we may calculate the F statistic using the coefficient of determination from the two models:


F* =�EMBED Equation.3���


Where R2* is the coefficient of determination from the restricted model.





