Chapter 14





14.1: Stages in Model Building





Model Specification





Model specification involves choosing the form of the relationship between the dependent variable and a set of independent variables. Theory plays a very important role in model specification. Should the relationship be linear or nonlinear? What are the relevant variables? If we assume a linear relationship, then we have to assume that the error terms have the desirable properties (satisfy all the classical linear regression assumptions).





Model Estimation





The next stage of model building is to estimate the parameters in the model. The estimation procedure we choose depends on the specification and the assumptions we make about the error terms.  The method of least squares remains the most popular, but we can not use it unless all the CLR assumptions are met.





Model Verification or Diagnostic Checking





Next, we test the model to see if all our assumptions on the specification have been met. In particular, we test to see if the error terms have the desirable properties. If any of the assumptions appear to have been violated, we revise the model and re-estimate it, perhaps, using another estimation procedure.  





Drawing Inferences from the Results





Finally, we conduct inferences on the model – using the results to draw conclusions about economic phenomena. We use the results for hypothesis testing, prediction, establishing confidence intervals and to test theory.





14.2: Dummy Variables





A dummy variable usually takes on a value of 0 or 1. We use 1 to represent the occurrence of an event and 0 for its non-occurrence. The use of a dummy variable allows us to introduce qualitative variables in the model. The are two kinds of dummy variables: an intercept dummy and a slope dummy. We will consider only an intercept dummy in this course. An intercept dummy allows the intercept to be different in the regression depending on whether the dummy is equal to 1 or 0, that is, whether a particular event occurred or not.





As an example, consider a model of wage as a function of experience and years of education. Suppose we want to include an employee’s sex as an additional regressor in the model. We define a dummy variable





�EMBED Equation.3���


The full model is 





W = a + b1EDUC + b2EXPER + b3S + e





where W is wage, EDUC years of education, EXPER years of experience and S a dummy variable for sex. It can be shown that the wage equation for males is 





Wm = (a + b3) + b1EDUC + b2EXPER +  e





and that for females is





Wf = a  + b1EDUC + b2EXPER +  e





The interpretations of the estimates of b1 and b2  are the same as before, but the interpretation of the estimate of b3 is different. It is the average difference between the wage of males and that of females, all else constant.  





Notice that we used only one dummy variable to represent the two sexes – males and females.  This is very important. If you attempted to use two different dummy variables for the two categories, you would receive an error message in your computer output that “no solution exists’. If we had introduced a second dummy variable, say S2 that was equal to 1 for females and otherwise, for each observation in the sample, we would have





S = 1 – S2





(Why?) Recall (from Chapter 13) that whenever one independent variable is a linear function (plus a constant term) of one or more other independent variables, no solution exists for the least squares parameters.





A very useful application of dummy variables is to model seasonal influences on time series variables. For example sales are generally higher in Christmas, housing starts are characteristically lower in winter, etc. In such instances, we may introduce seasonal dummies to capture the seasonal effects. We may define three dummy variables (why three?) as:
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Here, Fall is our “base category” because it has no dummy.  The coefficients on the dummies can be interpreted as the incremental effect on the intercept of being in a particular season (Spring, Winter, etc.) compared to Fall, all else constant. Assuming that the dependent variable is Housing Starts, and we have two other independent variables in the model – interest rates and disposable income, what is the full model? How do we estimate the difference between the number of Housing Starts in the Summer and that in the Winter?





Hypothesis Testing





Hypothesis testing for the significance of dummy variables is done in the usual way.





14.3 Lagged Dependent Variables





Lagged dependent variables are sometimes used as independent variables when there is reason to believe that previous values of the dependent variable affect its current value. For example the quantity of oil imported this month may depend on the quantity imported last month.  We may write a model with a lagged dependent variable as





Yt = a + b1X1 + b2X2 + gYt-1 + et.





Interpretation of the estimated coefficients is quite tricky in lagged models. A one unit change in Xi will lead to a bi unit change in Y in period 1, big  unit change in Y in period 2, �EMBED Equation.3���unit change in Y period 3, �EMBED Equation.3���unit change in Y period 3, and so on. The total effect on Y from a one-unit change in Xi is 





�EMBED Equation.3���.


 


14.4: Nonlinear Models





Sometimes, the relationship between two random variables may not be linear. For example, sales increase with increases in advertising expenditure, but after a point, the increases will slow down.





��


�    Sales	














�																																								Advert									


A linear specification will not capture the capture the relationship between advertising and sales. A least squares line will overpredict sales for very large or very small values of sales, and underpredict sales for the middle range of advertising expenses.





An alternative way is to specify a nonlinear relationship, e.g. a quadratic relationship between the two variables. For the example above, we may specify





Y = a + b1X1 + b2�EMBED Equation.3��� + e





To test for nonlinear relationship, we may test the null that b2 = 0.





The log-linear specification





This is very common in business and economics applications. The specification postulates a linear relationship not between the variables themselves, but between the logarithms of the variables. For example, 





logY = a + b1logX1 + b2logX2 + e





The partial regression coefficients in a log-linear model are interpreted as “elasticities”, or percentage changes in the dependent variable for a 1% change in the particular independent variable. For example, in the model above, let 


			Y 	= quantity demanded of a particular commodity


			X1 	= consumer price


			X2	= disposable income





Then 


b1	= price elasticity of demand, or the percentage change in quantity demanded for a 1% change in consumer price;


b2	= income elasticity of demand, or the percentage change in quantity demanded for a 1% change in disposable income.





Caution: Avoid using nonlinear models for predictions outside the range of data used in the analysis. (Why?)








14.5 Specification Bias





This has to do with model misspecification, either by omitting an important variable, or including an irrelevant variable.  





Omitting An Important Variable:


Regression estimates are biased, i.e., no longer BLUE. The estimates may have wrong signs. Tests of hypotheses and interval estimates all are invalid.





Reason: The error term picks up the effects of the omitted variables.  Consider the following: Assume that the true relationship is given by 


 Y = a + b1X1 + b2 X2 + e


and we estimate





Y = a + b1X1 + e





Then the error term will not be only e but b2 X2 + e. Let us call this “funny” error term m., which may be written as





m. = b2 X2 + e.





If X1 and X2 are correlated, then the error term is correlated with the included independent variable. You may recall that this violates one of the CLR assumptions. If X1 and X2 are uncorrelated (which is rarely the case), then the least squares estimates are still unbiased.





Including An Irrelevant Variable





Again, consider the following: Assume that the true relationship is given by 





 Y = a + b1X1 + e


but we estimate





Y = a + b1X1 + b2 X2 + e





Then the error term will not be only e but e - b2 X2. Let us call this error term m, which may be written as





m. = e - b2 X2.





Since X2 is irrelevant b2  = 0. But the variance of b1 will be larger. (Recall the formula for the variance of b). The net effect is that the least square estimates are unbiased, but they do not have minimum variance and, hence, they are not BLUE.





 

















