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Problem Definition :
We are given a set of n jobs {J1, J2, . . . , Jn}.
Each job Ji has a processing time ti ≥ 0.

We are given m identical machines.

Goal :

We want to assign (load) the jobs to machines such
that the maximum load is minimized.
In other words, we would like to balance the loads.
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Let A(i) be the set of jobs that are assigned to Mi .
Then the load of Mi denoted by Ti =

∑
j∈A(i) ti .

We wish to minimize T = maxi Ti .

The load balancing problem in NP-complete. Even
when there are two machines.
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Greedy-Balance

1. Set Ti = 0 and A(i) = ∅ for all machines Mi .

2. for j = 1 to n

3. Let Mi be a machine with minimum load (mink Tk).

4. Assign job j to machine Mi .

5. Set A(i)← A(i) ∪ {Jj}

6. Set Ti ← Ti + tj
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1) The optimal load T ∗ is at least

T ∗ ≥ 1

m

∑
j

tj

2) T ∗ ≥ maxj tj .

Lemma

Algorithm Greedy-Balance produces an assignment of jobs to
machines with max load T ≤ 2T ∗.
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Lemma

Algorithm Greedy-Balance produces an assignment of jobs to
machines with max load T ≤ 2T ∗.

Proof.

Consider the time we add job j into machine Mi . The load of
machine Mi was Ti − tj before adding Jj to Mi .

Also Ti − tj was

the smallest load. Every other machine has load at least Ti − tj .
Therefore :

m(Ti − ti ) ≤
∑
k

Tk

Also we know that
∑

k Tk ≤
∑

j tj . Therefore

Ti − tj ≤ 1
m

∑
j tj ≤ T ∗. Also we know that tj ≤ T ∗.

Therefore load of Mi after adding Jj is Ti = (Ti − tj) + tj ≤ 2T ∗.
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The Greedy-Balance could actually be as close as possible to 2T ∗.
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In general suppose there are m machines and n = m(m − 1) + 1
jobs.

The first m(m − 1) jobs each with time tj = 1 and the last job
n = m(m − 1) + 1 has time tn = m.

The optimal has T ∗ = m while the Greedy algorithms has max
load 2m − 1.
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An Improved Approximation Algorithm

Sort-Balance

1. Set T0 = 0 and A(i) = ∅ for all machines Mi .

2. Sort the jobs in decreasing order of processing times tj .

3. Assume t1 ≥ t2 ≥ ... ≥ tn.

4. for j = 1 to n

5. Let Mi be a machine with minimum load (mink Tk).

6. Assign job j to machine Mi .

7. Set A(i)← A(i) ∪ {Jj}

8. Set Ti ← Ti + tj
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If there are more than m jobs, then T ∗ ≥ 2tm+1.

Lemma

Algorithm Sort-Balance produces an assignment of jobs to
machines with max load T ≤ 3

2T
∗.

Using similar analysis as in the previous lemma (leave it as exercise)
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There exists an algorithm that find a solution for Load balancing
very close to optimal T ∗

In fact there is an algorithm that for every ε > 0 it finds a solution
that is not worse that (1 + ε)T ∗.

But the running time of the algorithm is

O(n(
1
ε
)1.5)

where n is the number of jobs.
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