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The Bayesian approach

A model for indirect measurements y ∈ Y of a parameter u ∈ X

y = G̃(u).

X, Y are Banach spaces.

G̃ encompasses measurement noise.

Simple example, additive noise model

y = G(u) + η.

G–deterministic forward map

η – independent random variable.

Find u given a realization of y.
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Application 1: atmospheric source inversion


(∂t − L)c = u in D × (0, T ],

c(x, t) = 0 on ∂D × (0, T ),

c(x, 0) = 0.
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Estimate u from accumulated
deposition measurements1.

1B. Hosseini and J. M. Stockie. “Bayesian estimation of airborne fugitive emissions using a
Gaussian plume model”. In: Atmospheric Environment 141 (2016), pp. 122–138.
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Application 2: high intensity focused ultrasound treatment
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converge.

Ablate diseased
tissue.

Phase shift due
to skull bone.

Defocused
beam.

Compensate for phase shift to focus the beam.

Estimate phase shift from MR-ARFI data2.

2B. Hosseini et al. “A Bayesian approach for energy-based estimation of acoustic aberrations
in high intensity focused ultrasound treatment”. arXiv preprint:1602.08080. 2016.
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Running example

ϕ ∗ u

u

S(ϕ ∗ u)
Example: Deconvolution

Let X = L2(T) and assume G(u) = S(ϕ ∗ u). Here ϕ ∈ C∞(T) and
S : C(T)→ Rm collects point values of a function at m distinct points {tk}mk=1.
Noise η is additive and Gaussian.

We want to find u given noisy pointwise observations of the blurred image.
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The Bayesian approach

Bayes’ rule3 in the sense of Radon-Nikodym theorem,

dµy

dµ0
(u) =

1

Z(y)
exp(−Φ(u; y)). (1)

µ0 – prior measure.

Φ – likelihood potential ← y = G̃(u).

Z(y) =
∫
X

exp(−Φ(u; y))dµ0(u) – normalizing constant.

µy – posterior measure.

µ0

Likelihood

µy

3A. M. Stuart. “Inverse problems: a Bayesian perspective”. In: Acta Numerica 19 (2010),
pp. 451–559.
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Why non-Gaussian priors?

dµy

dµ0
(u) =

1

Z(y)
exp(−Φ(u; y)).

suppµy ⊆ suppµ0 since µy � µ0.

The prior has a major influence on the posterior.
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Application 1: atmospheric source inversion

Ω := D × (0, T ]
Measurement operators

Mi : L2(Ω)→ R, Mi(c) =

∫
Ji×(0,T ]

c dxdt, i = 1, · · · ,m.

Forward map

G : L2(Ω)→ Rm, G(u) = (M1(c(u)), · · · ,Mm(c(u))T , c = (∂t − L)−1u.

Linear in u.

‖c‖L2(Ω) ≤ C‖u‖L2(Ω).

G is bounded and linear.
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Application 1: atmospheric source inversion

Assume y = G(u) + η where
η ∼ N (0, σ2I).

Φ(u; y) = 1
2σ2 ‖G(u)− y‖22.

Positivity constraint on source u.

Sources are likely to be localized.
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Application 2: high intensity focused ultrasound treatment

Underlying aberration field u.

Pointwise evaluation map for points {t1, · · · , td} in T2

S : C(T2)→ Rm (S(u))j = u(tj).

(Experiments) A collection of vectors {zj}mj=1 in Rd.

Quadratic forward map

G : C(T2)→ Rm (G(u))j := |zTj S(u)|2.

Phase retrieval in essence
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Application 2: high intensity focused ultrasound treatment

Assume y = G(u) + η where η ∼ N (0, σ2I).

Φ(u; y) = 1
2σ2 ‖G(u)− y‖22.

‖G(u)‖2 ≤ C‖u‖2C(T2).

Nonlinear forward map.

Hydrophone experiments show sharp interfaces.

Gaussian priors are too smooth.
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We need to go beyond Gaussian priors!
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Key questions

dµy

dµ0
(u) =

1

Z(y)
exp(−Φ(u; y)).

Is µy well-defined?

What happens if y is perturbed?

Easier to address when X = Rn.

More delicate when X is infinite dimensional.

13 / 53



Outline

(i) General theory of well-posed Bayesian inverse problems.

(ii) Convex prior measures.

(iii) Models for compressible parameters.

(iv) Infinitely divisible prior measures.
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Well-posedness

dµy

dµ0
(u) =

1

Z(y)
exp(−Φ(u; y))

Definition: Well-posed Bayesian inverse problem

Suppose X is a Banach space and d(·, ·)→ R is a probability metric. Given a
prior µ0 and likelihood potential Φ, the problem of finding µy is well-posed if:

(i) (Existence and uniqueness) There exists a unique posterior probability
measure µy � µ0 given by Bayes’ rule.

(ii) (Stability) For every choice of ε > 0 there exists a δ > 0 so that
d(µy, µy

′
) ≤ ε for all y, y′ ∈ Y so that ‖y − y′‖Y ≤ δ.
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Metrics on probability measures

The total variation and Hellinger metrics

dTV (µ1, µ2) :=
1

2

∫
X

∣∣∣∣dµ1

dν
− dµ2

dν

∣∣∣∣ dν

dH(µ1, µ2) :=

1

2

∫
X

(√
dµ1

dν
−
√

dµ2

dν

)2

dν

1/2

.

Note:
2d2
H(µ1, µ2) ≤ dTV (µ1, µ2) ≤

√
8dH(µ1, µ2).

Hellinger is more attractive in practice. For h ∈ L2(X,µ1) ∩ L2(X,µ2)∣∣∣∣∫
X

h(u)dµ1(u) −
∫
X

h(u)dµ2(u)

∣∣∣∣ ≤ C(h)dH(µ1, µ2).

Different convergence rates.
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Well-posedness: analogy

The likelihood Φ depends on the map G̃.
Given Φ what classes of priors can be used?

PDE analogy

A PDE where g ∈ H−s and L : Hp → H−s is a differential operator.

Lu = g

Seek a solution u = L−1g ∈ Hp.
Well-posedness depends on the smoothing behavior of L−1 and regularity of g.
In the Bayesian approach we seek µy that satisfies

Pµy = µ0.

The mapping P−1 depends on Φ.
Well-posedness depends on behavior of P−1 and tail behavior of µ0.

In a nutshell, if Φ grows at a certain rate we have well-posedness if µ0 has
sufficient tail decay.
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Assumptions on likelihood

Minimal assumptions on Φ (BH, 2016)

The potential Φ : X × Y → R satisfies:ab

(L1) (Locally bounded from below): There is a positive and non-decreasing function
f1 : R+ → [1,∞) so that

Φ(u; y) ≥M − log (f1(‖u‖X)) .

(L2) (Locally bounded from above):
Φ(u; y) ≤ K.

(L3) (Locally Lipschitz in u):

|Φ(u1; y)− Φ(u2, y)| ≤ L‖u1 − u2‖X .

(L4) (Continuity in y): There is a positive and non-decreasing function f2 : R+ → R+ so
that

|Φ(u; y1)− Φ(u, y2)| ≤ Cf2(‖u‖X)‖y1 − y2‖Y .
aStuart, “Inverse problems: a Bayesian perspective”.
bT. J. Sullivan. “Well-posed Bayesian inverse problems and heavy-tailed stable

Banach space priors”. arXiv preprint:1605.05898. 2016.
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Well-posedness: existence and uniqueness

(L1) (Bounded from below) Φ(u; y) ≥M − log (f1(‖u‖X)) .

(L2) (Locally bounded from above) Φ(u; y) ≤ K.

(L3) (Locally Lipschitz) |Φ(u1; y)− Φ(u2, y)| ≤ L‖u1 − u2‖X .

Existence and uniqueness (BH,2016)

Let Φ satisfy Assumptions L1–L3 with a function f1 ≥ 1, then the posterior µy is
well-defined if f1(‖ · ‖X) ∈ L1(X,µ0).

Example:

If y = G(u) + η, η ∼ N (0,ΣΣΣ) then Φ(u; y) = 1
2‖G(u)− y‖2ΣΣΣ and so M = 0 and

f1 = 1 since Φ ≥ 0.
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Well-posedness: stability

(L1) (Lower bound) Φ(u; y) ≥M − log (f1(‖u‖X)) .

(L2) (Locally bounded from above) Φ(u; y) ≤ K.

(L4) (Continuity in y) |Φ(u; y1)− Φ(u, y2)| ≤ Cf2(‖u‖X)‖y1 − y2‖Y .

Total variation stability (BH,2016)

Let Φ satisfy Assumptions L1, L2 and L4 with functions f1, f2 and let µy and µy
′

be two posterior measures for y and y′ ∈ Y . If f2(‖ · ‖X)f1(‖ · ‖X) ∈ L1(X,µ0)
then there is C > 0 such that dTV (µy, µy

′
) ≤ C‖y − y′‖Y .

Hellinger stability (BH,2016)

If the stronger condition (f2(‖ · ‖X))2f1(‖ · ‖X) ∈ L1(X,µ0) is satisfied then
there is C > 0 so that dH(µy, µy

′
) ≤ C‖y − y′‖Y .
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The case of additive noise models

let Y = Rm, η ∼ N (0,ΣΣΣ) and suppose y = G(u) + η.

Φ(u; y) = 1
2‖G(u)− y‖2ΣΣΣ.

Φ(u; y) ≥ 0 thus (L1) is satisfied with f1 = 1 and M = 0.

Well-posedness with additive noise models (BH,2016)

Let the forward map G satisfy:

(i) (Bounded) There is a positive and non-decreasing function f̃ ≥ 1 so that

‖G(u)‖ΣΣΣ ≤ Cf̃(‖u‖X) ∀u ∈ X.

(ii) (Locally Lipschitz)

‖G(u1)− G(u2)‖ΣΣΣ ≤ K‖u1 − u2‖X .

Then the problem of finding µy is well-posed if f̃(‖ · ‖X) ∈ L1(X,µ0).
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The case of additive noise models

Example: polynomially bounded forward map

Consider the additive noise model when Y = Rm, η ∼ N (0, I). Then

Φ(u; y) =
1

2
‖G(u)− y‖22.

If G is locally Lipschitz, ‖G(u)‖2 ≤ C max{1, ‖u‖pX} and p ∈ N then we have
well-posedness if µ0 has bounded moments of degree p.

In particular, if G is bounded and linear then it suffices for µ0 to have
bounded moment of degree one. Recall the deconvolution example!

Example: Gaussian priors

In the setting of the above example, if µ0 is a centered Gaussian then it follows
from Fernique’s theorem that we have well-posedness if ‖G(u)‖2 ≤ C exp(α‖u‖X)
for any α > 0.
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Outline

(i) General theory of well-posed Bayesian inverse problems.

(ii) Convex prior measures (µ0 has exponential tails).

(iii) Models for compressible parameters.

(iv) Infinitely divisible prior measures.
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From convex regularization to convex priors

Let X = Rn and Y = Rm.

Common variational formulation for inverse problems

u∗ = arg min
v∈Rn

{
1

2
‖G(v)− y‖2ΣΣΣ +R(v)

}
R(v) =

θ

2
‖LLLv‖22 (Tikhonov), R(v) = θ‖LLLv‖1 (Sparsity).

Bayesian analog

dµy

dΛ
(v) ∝ exp

(
−1

2
‖G(v)− y‖2ΣΣΣ

)
︸ ︷︷ ︸

Likelihood

exp (−R(v))︸ ︷︷ ︸
prior

.

Λ – Lebesgue measure.

A random variable with a log-concave Lebesgue density is convex.
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Convex priors

Gaussian, Laplace, Logistic, etc.
`1 regularization corresponds to Laplace priors.

dµy

dΛ
(v) ∝ exp

(
−1

2
‖G(v)− y‖2ΣΣΣ

)
exp (−‖v‖1) .

∝ exp

(
−1

2
‖G(v)− y‖2ΣΣΣ

) n∏
j=1

exp (−|vj |)

Definition: Convex measure4

A Radon probability measure ν on X is called convex whenever it satisfies the
following inequality for β ∈ [0, 1] and Borel sets A,B ⊂ X.

ν(βA+ (1− β)B) ≥ ν(A)βν(B)1−β

4C. Borell. “Convex measures on locally convex spaces”. In: Arkiv för Matematik 12.1
(1974), pp. 239–252.
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Convex priors

Convex measures have exponential tails5

Let ν be a convex measure on X. If ‖ · ‖X <∞ ν-a.s. then there exists a
constant κ > 0 so that

∫
X

exp(κ‖u‖X)dν(u) <∞.

Well-posedness with convex priors (BH & NN, 2016)

Let the prior µ0 be a convex measure assume

Φ(u; y) =
1

2
‖G(u)− y‖2ΣΣΣ

where G is locally Lipschitz and

‖G(u)‖ΣΣΣ ≤ C max{1, ‖u‖pX}, for p ∈ N.

Then we have a well-posed Bayesian inverse problem.

5Borell, “Convex measures on locally convex spaces”.
26 / 53



Constructing convex priors

Product prior (BH & NN, 2016)

Suppose X has an unconditional and normalized Schauder basis {xk}.
(a) Pick a fixed sequence {γk} ∈ `2.

(b) Pick a sequence of centered, real valued and convex random variables {ξk} so
that Varξk <∞ uniformly.

(c) Take µ0 to be the law of

u ∼
∞∑
k=1

γkξkxk.

‖ · ‖X <∞, µ0-a.s. and ‖ · ‖X ∈ L2(X,µ0).
The ξk are convex then so is µ0.
Reminiscent of Karhunen-Loève expansion of Gaussians.

u ∼
∞∑
k=1

γkξkxk, ξk ∼ N (0, 1).

{γk, xk} –eigenpairs of covariance operator.
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Returning to deconvolution

ϕ ∗ u u

tk

Example: Deconvolution

Let X = L2(T) and assume Φ(u; y) = 1
2‖G(u)− y‖22 where G(u) = S(ϕ ∗ u).

Here ϕ ∈ C∞(T) and S : C(T)→ Rm collects point values of a function at m
distinct points {tj}.

We will construct a convex prior that is supported on Bspp(T)
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Example: deconvolution with a Besov type prior

Let {xk} be an r-regular wavelet basis for L2(T).

For s < r, p ≥ 1 define the Besov space Bspp(T)

Bspp(T) :=

{
w ∈ L2(T) :

∞∑
k=1

k(sp−1/2)|〈w, xk〉|p <∞
}

The prior µ0 is the law of u ∼∑∞k=1 γkξkxk.

ξk are Laplace random variables with Lebesgue density 1
2 exp(−|t|).

γk = k−( 1
2p +s).

6M. Lassas, E. Saksman, and S. Siltanen. “Discretization-invariant Bayesian inversion and
Besov space priors”. In: Inverse Problems and Imaging 3.1 (2009), pp. 87–122.

7T. Bui-Thanh and O. Ghattas. “A scalable algorithm for MAP estimators in Bayesian
inverse problems with Besov priors”. In: Inverse Problems and Imaging 9.1 (2015), pp. 27–53.
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Example: deconvolution with a Besov type prior

‖ · ‖Bs
pp(T) <∞ µ0-a.s. and µ0 is a convex measure.

Forward map is bounded and linear.

Problem is well-posed.8

8M. Dashti, S. Harris, and A. M. Stuart. “Besov priors for Bayesian inverse problems”. In:
Inverse Problems and Imaging 6.2 (2012), pp. 183–200.
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Outline

(i) General theory of well-posed Bayesian inverse problems.

(ii) Convex prior measures.

(iii) Models for compressible parameters.

(iv) Infinitely divisible prior measures.
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Models for compressibility

A common problem in compressed sensing

u∗ = arg min
v∈Rn

1

2
‖Av − y‖22 + θ‖v‖pp.

p = 1, problem is convex.

p < 1, no longer convex but a good model for compressibility.

Bayesian analog

dµy

dΛ
(v) ∝ exp

(
−1

2
‖Av − y‖22

) n∏
j=1

exp (−θ|vj |p) .
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Models for compressibility

p = 1.

p = 1/2.
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Models for compressibility

Symmetric generalized gamma prior for 0 < p, q ≤ 1

dµ0

dΛ
(v) ∝

n∏
j=1

|vj |p−1 exp (−|vj |q) .

Corresponding posterior

dµy

dΛ
(v) ∝ exp

−1

2
‖Av − y‖22 − ‖v‖qq +

n∑
j=1

(p− 1) ln(|vj |)


Maximizer is no longer well-defined.

Perturbed variational analog for ε > 0

u∗ε = arg min
v∈Rn

1

2
‖Av − y‖22 + ‖v‖qq −

n∑
j=1

(p− 1) ln(ε+ |vj |)
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Models for compressibility

p = 1/2, q = 1

p = q = 1/2

35 / 53



Models for compressibility

SG(p, q, α) density on the real line.

p

2αΓ(q/p)

∣∣∣∣ tα
∣∣∣∣p−1

exp

(
−
∣∣∣∣ tα
∣∣∣∣q) dΛ(t).

Has bounded moments of all order.

SG(p, q, α) prior: extension to infinite dimensions (BH,2016)

Suppose X has an unconditional and normalized Schauder basis {xk}.
(a) Pick a fixed sequence {γk} ∈ `2.

(b) {ξk} is an i.i.d sequence of SG(p, q, α) random variables.

(c) Take µ0 to be the law of u ∼∑∞k=1 γkξkxk.
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Returning to deconvolution

Example: deconvolution with a SG(p, q, α) prior

Let {xk} be the Fourier basis in L2(T).

Define the Sobolev space H1(T)

H1(T) :=

{
w ∈ L2(T) :

∞∑
k=1

(1 + k2)|〈w, xk〉|2 <∞
}

The prior µ0 is the law of u ∼∑∞k=1 γkξkxk.

ξk are i.i.d. SG(p, q, α) random variables.

γk = (1 + k2)−3/4.
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Example: deconvolution with a SG(p, q, α) prior

‖ · ‖H1(T) <∞ µ0-a.s.

Forward map is bounded and linear.

Problem is well-posed.
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Outline

(i) General theory of well-posed Bayesian inverse problems.

(ii) Convex prior measures.

(iii) Models for compressible parameters.

(iv) Infinitely divisible prior measures.
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Infinitely divisible priors

Definition: infinitely divisible measure (ID)

A Radon probability measure ν on X is infinitely divisible (ID) if for each n ∈ N
there exists a Radon probability measure ν1/n so that ν = (ν1/n)∗n.

ξ is ID if for any n ∈ N there exist i.i.d random variables {ξ1/n
k }nk=1 so that

ξ
d
=
∑n
k=1 ξ

1/n
k .

SG(p, q, α) priors are ID.

Gaussian, Laplace, compound Poisson, Cauchy, student’s-t, etc.

ID measures have an interesting compressible behavior9.

9M. Unser and P. Tafti. An introduction to sparse stochastic processes. Cambridge
University Press, Cambridge, 2013.
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Deconvolution

Example: deconvolution with a compound Poisson prior

Let {xk} be the Fourier basis in L2(T).

µ0 is the law of u ∼∑∞k=1 γkξkxk.

ξk are i.i.d. compound Poisson random variables

ξk ∼
νk∑
j=0

ηjk.

νk are i.i.d Poisson random variables with rate b > 0.

ηjk are i.i.d unit normals.

γk = (1 + k2)−3/4.

ξk = 0 with probability e−b.
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Deconvolution

10 20 30 40 50 60

k

-0.2

-0.1

0

0.1

0.2

|ξ
k
 γ

k
|

0 0.2 0.4 0.6 0.8 1

t

-1

-0.5

0

0.5

1

u
(t

)

10 20 30 40 50 60

k

-0.2

-0.1

0

0.1

0.2

|ξ
k
 γ

k
|

0 0.2 0.4 0.6 0.8 1

t

-1

-0.5

0

0.5

1

u
(t

)

Example: deconvolution with a compound Poisson prior

Truncations are sparse in the strict sense.

‖ · ‖H1(T) <∞ a.s.

We have well-posedness.
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Lévy-Khintchine

Recall the characteristic function of a measure µ on X

µ̂(%) :=

∫
X

exp(i%(u))dµ(u) ∀% ∈ X∗.

Lévy-Khintchine representation of ID measures

A Radon probability measure on X is infinitely divisible if and only if there exists
an element m ∈ X, a (positive definite) covariance operator Q : X∗ → X and a
Lévy measure λ, so that

µ̂(%) = exp(ψ(%))

ψ(%) = i%(m)︸ ︷︷ ︸
point mass

− 1

2
%(Q(%))︸ ︷︷ ︸
Gaussian

+

∫
X

exp(i(%(u))− 1︸ ︷︷ ︸
compound Poisson

− i%(u)1BX
(u)dλ(u).

ID(m,Q, λ).
If λ is a symmetric probability measure on X

ID(m,Q, λ) = δm ∗ N (0,Q) ∗ compound Poisson.
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Tail behavior of ID measures and well-posedness

Tail behavior of ID is tied to the tail behavior of the Lévy measure λ

Moments of ID measures

Suppose µ = ID(m,Q, λ). If 0 < λ(X) <∞ and ‖ · ‖X <∞ µ-a.s. then
‖ · ‖X ∈ Lp(X,µ) whenever ‖ · ‖X ∈ Lp(X,λ) for p ∈ [1,∞).

Well-posedness with ID priors (BH,2016)

Suppose µ0 = ID(m,Q, λ), 0 < λ(X) <∞ and take Φ(u; y) = 1
2‖G(u)− y‖2ΣΣΣ. If

max{1, ‖ · ‖pX} ∈ L1(X,λ) for p ∈ N and G is locally Lipschitz so that

‖G(u)‖X ≤ C max{1, ‖u‖pX},

then we have a well-posed Bayesian inverse problem.
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Deconvolution once more

Example: deconvolution with a BV prior

Consider the deconvolution problem on T.

Stochastic process u(t) for t ∈ (0, 1) defined via

u(0) = 0, ût(s) = exp

(
t

∫
R

exp(iξs)− 1 dν(ξ)

)
.

ν is a symmetric measure and
∫
|ξ|≤1

|ξ|dν(ξ) <∞.

Pure jump Lévy process.

Similar to the Cauchy difference prior10.

10M. Markkanen et al. “Cauchy difference priors for edge-preserving Bayesian inversion with an
application to X-ray tomography”. arXiv preprint:1603.06135. 2016.
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Deconvolution once more

0 0.2 0.4 0.6 0.8 1

t

-5

0

5

u
(t

)

0 0.2 0.4 0.6 0.8 1

t

-5

0

5

u
(t

)

Example: deconvolution with a BV prior

u has countably many jump discontinuities.

‖u‖BV (T) <∞ a.s.11

µ0 is the measure induced by u(t).

BV is non-separable.

Forward map is bounded and linear.

Well-posed problem.

11R. Cont and P. Tankov. Financial modelling with jump processes. Chapman & Hall/CRC
Financial mathematics series. CRC press LLC, New York, 2004.
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Closing remarks

Well-posedness can be achieved with relaxed conditions.

Gaussians have serious limitations in terms of modelling.

Many different priors to choose from.
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Closing remarks

Sampling.

Random walk Metropolis-Hastings
for self-decomposable priors.

Randomize-then-optimize12.

Fast Gibbs sampler13.
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Fig. 4.5. Example B: True signal and noisy measurements.

slightly. This is an important and encouraging result, as it is evidence of discretization invariance
not only in the problem formulation, but in the performance of the transformed RTO-MH sampling
scheme. Finally, as we increase the hyperparameter λ, the CM becomes smoother and the posterior
standard deviation decreases, as in shown Figure 4.7. The sampling efficiency of our algorithm also
deteriorates with increasing λ, as shown in Table 4.3. Overall, the results from these parameter
studies indicate that RTO-MH with a prior transformation is effective even when the parameter
dimension n is in the hundreds.

Remark 4.2. In Figure 4.6, the posterior standard deviation does not converge as the discretiza-
tion is refined (i.e., as n increases). This behavior is not unexpected, as the prior standard deviation
also does not converge under mesh refinement. In particular, the Bs1,1 Besov space prior with Haar
wavelets has finite pointwise variance only when s > 1, and not when s = 1. One can prove this
property by summing the variance contributions from each level of wavelets in the Besov prior, as
shown in Appendix D.

Remark 4.3. One possible reason for the decrease in sampling efficiency with higher λ is that
the posterior samples lie further in the tails of the Laplace prior. As a result, the transformation is
more nonlinear in the sense that the Hessian involving g′′1D is of higher magnitude.

Table 4.2
Example B: ESS and computational cost of RTO for various parameter dimensions, given chains of length 1 · 104.

n
Total ESS Total evaluations

Minimum Median Maximum Function Jacobian

32 2.68 · 103 3.86 · 103 4.61 · 103 4.26 · 105 4.26 · 105

64 2.63 · 103 3.65 · 103 4.44 · 103 4.55 · 105 4.55 · 105

128 2.10 · 103 3.53 · 103 5.07 · 103 4.59 · 105 4.59 · 105

256 2.89 · 103 3.69 · 103 4.43 · 103 4.61 · 105 4.61 · 105

512 2.06 · 103 3.65 · 103 4.41 · 103 4.65 · 105 4.65 · 105

14
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(b) Posterior standard deviation

Fig. 4.6. Example B: Variation in the posterior mean and posterior standard deviation with parameter dimension
n. Hyperparameter λ is fixed to 32.

4.2. Two-dimensional elliptic PDE inverse problem. Our next numerical example is an
elliptic PDE coefficient inverse problem on a two-dimensional domain. The forward model maps the
log-conductivity field of the Poisson equation to observations of the potential field,

∇ · (exp{θ(x)}∇s(x)) = h(x), x ∈ [0, 1]2,

where θ is the log-conductivity, s is the potential, and h is the forcing function. Neumann boundary
conditions

exp{θ(x)}∇s(x) · ~n(x) = 0

are imposed, where ~n(x) is the normal vector at the boundary. To complete the system of equations,
the average potential on the boundary is set to zero.

This PDE is solved using finite elements. The domain is partitioned into a
√
n×√n uniform grid

of square elements, and we use linear shape functions in both directions. The parameters θ ∈ Rn
to be inferred are the nodal vaIues of θ(x). Independent Gaussian noise with standard deviation

15

12Z. Wang et al. “Bayesian inverse problems with l 1 priors: a Randomize-then-Optimize
approach”. arXiv preprint:1607.01904. 2016.

13F. Lucka. “Fast Gibbs sampling for high-dimensional Bayesian inversion”.
arXiv:1602.08595. 2016.
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Closing remarks

Analysis of priors:

What constitutes compressibility?
What is the support of the prior?

Hierarchical priors.

Modelling constraints.
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Thank you

B. Hosseini. “Well-posed Bayesian inverse problems with infinitely-divisible and
heavy-tailed prior measures”. arXiv preprint:1609.07532. 2016

B. Hosseini and N. Nigam. “Well-posed Bayesian inverse problems: priors with
exponential tails”. arXiv preprint:1604.02575. 2016
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Well-posedness

Minimal assumptions on Φ (BH, 2016)

The potential Φ : X × Y → R satisfies: 1415

(L1) (Lower bound in u): There is a positive and non-decreasing function f1 : R+ → [1,∞) so that
∀r > 0, there is a constant M(r) ∈ R such that ∀u ∈ X and ∀y ∈ Y with ‖y‖Y < r,

Φ(u; y) ≥M − log (f1(‖u‖X)) .

(L2) (Boundedness above): ∀r > 0 there is a constant K(r) > 0 such that ∀u ∈ X and ∀y ∈ Y with
max{‖u‖X , ‖y‖Y } < r,

Φ(u; y) ≤ K.
(L3) (Continuity in u): ∀r > 0 there exists a constant L(r) > 0 such that ∀u1, u2 ∈ X and y ∈ Y

with max{‖u1‖X , ‖u2‖X , ‖y‖Y } < r,

|Φ(u1; y)− Φ(u2, y)| ≤ L‖u1 − u2‖X .

(L4) (Continuity in y): There is a positive and non-decreasing function f2 : R+ → R+ so that ∀r > 0,
there is a constant C(r) ∈ R such that ∀y1, y2 ∈ Y with max{‖y1‖Y , ‖y2‖Y } < r and ∀u ∈ X,

|Φ(u; y1)− Φ(u, y2)| ≤ Cf2(‖u‖X)‖y1 − y2‖Y .

15Stuart, “Inverse problems: a Bayesian perspective”.
15Sullivan, “Well-posed Bayesian inverse problems and heavy-tailed stable Banach space

priors”.
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The case of additive noise models

Well-posedness with additive noise models

Consider the above additive noise model. In addition, let the forward map G satisfy the
following conditions with a positive, non-decreasing and locally bounded function f̃ ≥ 1:

(i) (Bounded) There is a constant C > 0 for which

‖G(u)‖ΣΣΣ ≤ Cf̃(‖u‖X) ∀u ∈ X.

(ii) (Locally Lipschitz) ∀r > 0 there is a constant K(r) > 0 so that for all u1, u2 ∈ X and
max{‖u1‖X , ‖u2‖X} < r

‖G(u1)− G(u2)‖ΣΣΣ ≤ K‖u1 − u2‖X .

Then the problem of finding µy is well-posed if µ0 is a Radon probability measure on X
such that f̃(‖ · ‖X) ∈ L1(X,µ0).
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