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The Bayesian approach

@ A model for indirect measurements y € Y of a parameter u € X
y = G(u).

@ X,Y are Banach spaces.
@ G encompasses measurement noise.

@ Simple example, additive noise model
y=G(u)+n.

@ G-—deterministic forward map
@ 1 — independent random variable.
e Find u given a realization of y.



Application 1: atmospheric source inversion

0y —L)e=u in D x (0,T],
on 9D x (0,T),

@ Advection-diffusion PDE.

Deposition in mg

Estimate v from accumulated
deposition measurements’.
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IB. Hosseini and J. M. Stockie. “Bayesian estimation of airborne fugitive emissions using a
Gaussian plume model”. In: Atmospheric Environment 141 (2016), pp. 122-138.
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Application 2: high intensity focused ultrasound treatment

@ Acoustic waves
converge.

@ Ablate diseased
tissue.

120 @ Phase shift due

100 to skull bone.

Needle hydrophone

Phase shift (deg)

Attenuation (%)

50 @ Defocused
beam.

o Compensate for phase shift to focus the beam.

Estimate phase shift from MR-ARFI data?. J

2B. Hosseini et al. “A Bayesian approach for energy-based estimation of acoustic aberrations

in high intensity focused ultrasound treatment”. arXiv preprint:1602.08080. 2016.
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Running example

Y *U

~ NS\
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S(p*u)

Example: Deconvolution

Let X = L*(T) and assume G(u) = S(¢ * u). Here o € C>°(T) and
S : C(T) — R™ collects point values of a function at m distinct points {tz}7" ;.
Noise 7 is additive and Gaussian.

We want to find u given noisy pointwise observations of the blurred image. )
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The Bayesian approach
o Bayes’ rule? in the sense of Radon-Nikodym theorem,

duy 1
™ = Z(y)

exp(—=®(u; y))- 1)

@ [ip — prior measure.
o @ - likelihood potential < y = G(u).
o Z(y) = [y exp(—®(u;y))dpuo(u) — normalizing constant.
e uY — posterior measure.
Likelihood )
Ho It

ﬁ

~

3A. M. Stuart. “Inverse problems: a Bayesian perspective”. In: Acta Numerica 19 (2010),
pp. 451-559.
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Why non-Gaussian priors?

dpY 1 )
T2 ) = i expl—Bluy).

o suppp? C supppg since p¥ < pg.
@ The prior has a major influence on the posterior.
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Application 1: atmospheric source inversion

e 0:=D x (0,7
@ Measurement operators

M I3(Q) > R, Mi(c) =/ cdadtyi =1, m.

J;ix(0,T)
@ Forward map

G: LX) = R™, G(u) = (Mi(c(w)), -, Min(c(u)”,

@ Linear in w.

o |cllzzo) < Cllullr2(a)-
@ G is bounded and linear.

1000
x [m]

1500

c=(0; — L) tu.
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Application 1: atmospheric source inversion

e Assume y = G(u) + 1 where
n ~ N(0,0%1).

° D(u;y) = 52[G(u) — yl3.

@ Positivity constraint on source wu.
@ Sources are likely to be localized.
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Application 2: high intensity focused ultrasound treatment

Phase shift (deg)

@ Underlying aberration field w.

@ Pointwise evaluation map for points {ty,--- ,t4} in T?

Attenuation (%)

S:O(T2) = R™  (S(u); = ulty).

o (Experiments) A collection of vectors {z;}]; in R .
eedle hydrophone

@ Quadratic forward map
G:CO(T?) - R™ (G(u)); == |ZJT,S’(u)|2

@ Phase retrieval in essence
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Application 2: high intensity focused ultrasound treatment

E 20
o Assume y = G(u) + 1 where n ~ N (0, o*I). g o
=
° ®(u;y) = 5,7/G(u) — yli3. 2
) 2 -20
o [[G(u)llz < Cllullgge)- =
@ Nonlinear forward map.
S 110
@ Hydrophone experiments show sharp interfaces. § 100
@ Gaussian priors are too smooth. J % %0
Z
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We need to go beyond Gaussian priors!
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Key questions

d,U/y = 1 expl— u;

o Is p¥ well-defined?
@ What happens if y is perturbed?
o Easier to address when X = R"™.

@ More delicate when X is infinite dimensional.
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Outline

(i

) General theory of well-posed Bayesian inverse problems.
(ii) Convex prior measures.
)

)

(iii

(iv) Infinitely divisible prior measures.

Models for compressible parameters.
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Well-posedness

d/’l’y = LGX — Uu;

Definition: Well-posed Bayesian inverse problem

Suppose X is a Banach space and d(-,-) — R is a probability metric. Given a
prior 1o and likelihood potential ®, the problem of finding ¥ is well-posed if:
(i) (Existence and uniqueness) There exists a unique posterior probability

measure p¥ < o given by Bayes' rule.

(ii) (Stability) For every choice of € > 0 there exists a § > 0 so that
d(p¥,p¥") < e for all y,y" € Y so that [ly — ¢/'||y <.

15 /53
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Metrics on probability measures

@ The total variation and Hellinger metrics

du dp
dTV(Hl;lQ) / T;—T;

d d
i (pa, p2) (\/ d,uul V df)

2d7; (1, p2) < dpv (i, p2) < V8dp (i, o).
Hellinger is more attractive in practice. For h € L?(X, pu1) N L3(X, )

‘/ w)dp (u /h )dpz(u)

Different convergence rates.

dv

o Note:

< C(h)dp(pr, po).
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Well-posedness: analogy

@ The likelihood ® depends on the map G.
@ Given ® what classes of priors can be used?

PDE analogy
o A PDE where g € H=* and £ : HP — H~* is a differential operator.
Lu=g

@ Seek a solution u = L~1g € HP.
Well-posedness depends on the smoothing behavior of £~! and regularity of g.
In the Bayesian approach we seek u¥ that satisfies

Pu? = po.

The mapping P~! depends on ®.
Well-posedness depends on behavior of P! and tail behavior of .

In a nutshell, if ¢ grows at a certain rate we have well-posedness if 1y has
sufficient tail decay.

17 /53



Assumptions on likelihood

Minimal assumptions on ® (BH, 2016)
The potential ® : X x Y — R satisfies:??
(L1) (Locally bounded from below): There is a positive and non-decreasing function
f1: Ry —[1,00) so that
D(usy) = M —log (f1(l|ullx)) -
(L2) (Locally bounded from above):
(u;y) < K.
(L3) (Locally Lipschitz in wu):

|P(u1;y) — (uz,y)| < L|luy — ual|x-

(L4) (Continuity in y): There is a positive and non-decreasing function f5 : R — Ry so
that

[@(us91) — (u, 92)| < Clallullx)llyr — vally-

2Stuart, “Inverse problems: a Bayesian perspective’.
bT_ J. Sullivan. “Well-posed Bayesian inverse problems and heavy-tailed stable
Banach space priors”. arXiv preprint:1605.05898. 2016.




Well-posedness: existence and uniqueness

o (L1) (Bounded from below) ®(u;y) > M — log (f1(|lullx))-
@ (L2) (Locally bounded from above) ®(u;y) < K.
@ (L3) (Locally Lipschitz) |®(u1;y) — ®(uz2,y)| < Lljur — ua|x-

Existence and uniqueness (BH,2016)

Let ® satisfy Assumptions L1-L3 with a function f; > 1, then the posterior u¥ is
well-defined if f1(|| - [|x) € LY(X, uo)-

Example:

If y =G(u) +n, n~N(0,Z) then ®(u;y) = 2(|G(u) — y|% and so M = 0 and
f1=1since ® > 0.

19/53
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Well-posedness: stability

o (L1) (Lower bound) ®(u;y) > M —log (f1(||ullx)) -
@ (L2) (Locally bounded from above) ®(u;y) < K.
°

(L4) (Continuity in y) [®(u;y1) — P(u,y2)| < Cha(llullx)llyr — y21lv-

Total variation stability (BH,2016)

Let ® satisfy Assumptions L1, L2 and L4 with functions f1, fo and let u¥ and ,uy,

be two posterior measures for y and y' € Y. If fo(|| - ||x)fi(]| - |l x) € LY(X, uo)
then there is C' > 0 such that dpy (u¥, 1Y) < Clly — /||y

Hellinger stability (BH,2016)

If the stronger condition (fa(|| - | x))2f1(|| - |l x) € LY (X, uo) is satisfied then
there is C' > 0 so that dg (¥, ¥ ) < Clly — ¢'|ly-




The case of additive noise models

o let Y =R™, n~N(0,E) and suppose y = G(u) + 7.
o d(usy) = 5/G(u) —ylg.
@ ®(u;y) > 0 thus (L1) is satisfied with f; =1 and M = 0.

Well-posedness with additive noise models (BH,2016)
Let the forward map G satisfy:

(i) (Bounded) There is a positive and non-decreasing function f > 1 so that
IG@)lle < Cf(lullx)  Vue X.

(ii) (Locally Lipschitz)
1G(u1) = G(ug)lls < Kllur — ug|x.

Then the problem of finding 1¥ is well-posed if f(|| - ||x) € LY(X, uo).
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The case of additive noise models

Example: polynomially bounded forward map
Consider the additive noise model when Y = R™, 5 ~ N(0,1). Then

B(usy) = 216() ~ oI}

If G is locally Lipschitz, [|G(u)|2 < C max{1, ||ul/%} and p € N then we have
well-posedness if 1o has bounded moments of degree p.

In particular, if G is bounded and linear then it suffices for i, to have
bounded moment of degree one. Recall the deconvolution example!

Example: Gaussian priors

In the setting of the above example, if g is a centered Gaussian then it follows
from Fernique’s theorem that we have well-posedness if ||G(u)|l2 < Cexp(a||ullx)
for any a > 0.
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Outline

(i)

(i) Convex prior measures (1o has exponential tails).
(iii)

)

(iv) Infinitely divisible prior measures.

Models for compressible parameters.

General theory of well-posed Bayesian inverse problems.



From convex regularization to convex priors

@ Let X =R™and Y = R™.

@ Common variational formulation for inverse problems

1
u* = arg min {2”9(1)) —ylg + R(”)}

veER™

R(v) = gHLvH% (Tikhonov), R(v) = 0||Lv||1 (Sparsity).

@ Bayesian analog

ZLAy(v) o exp (-;HG(U) - y%) exp (=R (v)).

prior

Likelihood

@ A — Lebesgue measure.

A random variable with a log-concave Lebesgue density is convex. J




Convex priors

o Gaussian, Laplace, Logistic, etc.
@ /; regularization corresponds to Laplace priors.

C(IjLAy(v) X exp (—;Hg(v) - y||§:> exp (—||v[l1) .
o exp (—HQ y||2> H (—|v;])

Definition: Convex measure*

A Radon probability measure v on X is called convex whenever it satisfies the
following inequality for 5 € [0, 1] and Borel sets A, B C X.

v(BA+ (1 - B)B) > v(A)Pv(B)'~F

4C. Borell. “Convex measures on locally convex spaces”. In: Arkiv for Matematik 12.1
(1974), pp. 239-252.



Convex priors

Convex measures have exponential tails®

Let v be a convex measure on X. If || - || x < oo v-a.s. then there exists a
constant £ > 0 so that [ exp(kl|ul|x)dv(u) < co.

Well-posedness with convex priors (BH & NN, 2016)

Let the prior 1y be a convex measure assume

1
®(u;9) = 5119(w) — yl3
where G is locally Lipschitz and

19(W)llg < Cmax{1, |lullk}, for peN

Then we have a well-posed Bayesian inverse problem.

5Borell, “Convex measures on locally convex spaces”.
26 /53
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Constructing convex priors

Product prior (BH & NN, 2016)

Suppose X has an unconditional and normalized Schauder basis {z}.

(a) Pick a fixed sequence {7} € £2.

(b) Pick a sequence of centered, real valued and convex random variables {&;} so

that Varé;, < oo uniformly.
(c) Take pg to be the law of

oo
u~ Y Wbrar.
k=1

o ||-||x < oo, po-as. and || - ||x € L*(X, o).
@ The & are convex then so is py.
@ Reminiscent of Karhunen-Loéve expansion of Gaussians.

u~ Y wkrk, &~ N(0,1),

k=1
o {7k, zr} —eigenpairs of covariance operator.




Returning to deconvolution

Example: Deconvolution

Let X = L*(T) and assume ®(u;y) = 3[|G(u) — y||3 where G(u) = S(p * u).
Here ¢ € C°°(T) and S : C(T) — R™ collects point values of a function at m
distinct points {¢;}.

We will construct a convex prior that is supported on B;p(']I‘) J




Example: deconvolution with a Besov type prior

o Let {z;} be an r-regular wavelet basis for L?(T).
@ For s <r,p > 1 define the Besov space B, (T)

(o)
B,,(T) := w e L3(T Zk”’ V2| (w, 2)|P < o0
k=1

@ The prior pg is the law of u ~ > 72 | Vi&pwy.
o & are Laplace random variables with Lebesgue density 1 exp(—|t|).

Q VY = ]{77(%+S).

6M. Lassas, E. Saksman, and S. Siltanen. “Discretization-invariant Bayesian inversion and
Besov space priors”. In: Inverse Problems and Imaging 3.1 (2009), pp. 87-122.

’T. Bui-Thanh and O. Ghattas. “A scalable algorithm for MAP estimators in Bayesian
inverse problems with Besov priors”. In: Inverse Problems and Imaging 9.1 (2015), pp. 27-53.
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Example: deconvolution with a Besov type prior
® |- llps,(m) < o0 po-a.s. and pig is a convex measure.
@ Forward map is bounded and linear.

@ Problem is well-posed.®

8M. Dashti, S. Harris, and A. M. Stuart. “Besov priors for Bayesian inverse problems”.
Inverse Problems and Imaging 6.2 (2012), pp. 183-200.

In:
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Models for compressibility

@ A common problem in compressed sensing

u" = arg min *IIAv —yll3 + 0]l
UGR’VL
@ p =1, problem is convex.
@ p < 1, no longer convex but a good model for compressibility.
@ Bayesian analog
dp?
92 0) o exp (310 =3 [T exo (-0 ).

Jj=1
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Models for compressibility

Likelihood Posterior

2 1 25 m!
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5 1.
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Models for compressibility

@ Symmetric generalized gamma prior for 0 < p,q <1

dlio
H 0[P~ exp (—[v;]7).

Corresponding posterior

dpY 1 -
a0 xexp | =5 [[Av— ylls = lolg+ > (p = 1) InJvy))

Maximizer is no longer well-defined.

Perturbed variational analog for ¢ > 0

n

ul —arggunfllAv yll3 + [[ollE = (0 — 1) In(e + |v; )
vEe 3
Jj=1
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Models for compressibility

p=1/2,g=1

Likelihood

p:

Posterior

Lo6



Models for compressibility

v
o

e SG(p,q,a) density on the real line.
p

e . (-

@ Has bounded moments of all order.

! q) dA(t).

(07

SG(p, q,«) prior: extension to infinite dimensions (BH,2016)

Suppose X has an unconditional and normalized Schauder basis {xy}.
(a) Pick a fixed sequence {7} € ¢%.

(b) {&} is an i.i.d sequence of SG(p,q, «) random variables.

(c) Take pg to be the law of u ~ Y77 | Vi

36/53



Returning to deconvolution

Example: deconvolution with a SG(p, g, «) prior

o Let {z;} be the Fourier basis in L*(T).
@ Define the Sobolev space H!(T)

o0
HY(T) := {wEL2 Zl—!—k wmk>|2<oo}
k=1
@ The prior pg is the law of u ~ > 7 | Vi&pwy.

@ & arei.i.d. SG(p,q,a) random variables.
o = (1+ k2)73/4.

37/53
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Example: deconvolution with a SG(p, q, ) prior
o || [l < oo po-ass.
@ Forward map is bounded and linear.
@ Problem is well-posed.
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(ii) Convex prior measures.
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Models for compressible parameters.
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Infinitely divisible priors

Definition: infinitely divisible measure (ID)

A Radon probability measure v on X is infinitely divisible (ID) if for each n € N
there exists a Radon probability measure v/" so that v = (v1/™)*",

o £ is ID if for any n € N there exist i.i.d random variables {511/"}2:1 so that
d n 1/n
£= Zk:l fk/ :
e SG(p,q,«) priors are ID.

@ Gaussian, Laplace, compound Poisson, Cauchy, student’s-t, etc.

o ID measures have an interesting compressible behavior®.

9M. Unser and P. Tafti. An introduction to sparse stochastic processes. Cambridge
University Press, Cambridge, 2013.



Deconvolution

Example: deconvolution with a compound Poisson prior
Let {x;} be the Fourier basis in L?(T).

po is the law of u ~ >0 | i&pwy.
& are i.i.d. compound Poisson random variables

Vi
&~ ) Njk-
j=0

vy are i.i.d Poisson random variables with rate b > 0.

;% are i.i.d unit normals.
e = (1+k%)=3/4.
&, = 0 with probability e~?.

41 / 5:



Deconvolution
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Example: deconvolution with a compound Poisson prior
@ Truncations are sparse in the strict sense.
) || . ||H1(T) < o0 a.s.

@ We have well-posedness.
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Lévy-Khintchine
@ Recall the characteristic function of a measure p on X

Ao) == /X exp(io(u))du(u) Vo€ X",

Lévy-Khintchine representation of ID measures

A Radon probability measure on X is infinitely divisible if and only if there exists
an element m € X, a (positive definite) covariance operator Q@ : X* — X and a

Lévy measure A, so that

fi(e) = exp(¢)(0))
(m

(0
) -

1 . .
¥(e) = 50(2(0)) +/ exp(i(o(u)) — 1 —ig(u)1py (w)dA(u).
N—— —_———
point mass Gauvssian X compound Poisson
e ID(m,Q,\).

o If A is a symmetric probability measure on X
ID(m, Q,\) = &, * N'(0, Q) x compound Poisson.
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Tail behavior of ID measures and well-posedness

@ Tail behavior of ID is tied to the tail behavior of the Lévy measure A

Moments of ID measures

Suppose = ID(m, Q, ). If 0 < A(X) < oo and || - ||x < oo p-a.s. then
|- llx € LP(X, ) whenever || - || x € LP(X,\) for p € [1, 00).

Well-posedness with ID priors (BH,2016)

Suppose (g = ID(m, Q,\), 0 < A\(X) < oo and take ®(u;y) = 3[|G(u) — y[. If

max{1, || - |5} € LY(X,\) for p € N and G is locally Lipschitz so that
19(w)llx < Cmax{1, ul%},

then we have a well-posed Bayesian inverse problem.

44 /53



Deconvolution once more

Example: deconvolution with a BV prior
@ Consider the deconvolution problem on T.
@ Stochastic process u(t) for ¢ € (0,1) defined via

u(0) =0, Ut (s) = exp (t/Rexp(ifs) -1 du(f)) .

® v is a symmetric measure and [, [€]dv(§) < oo.

@ Pure jump Lévy process.

@ Similar to the Cauchy difference priortC.

10M. Markkanen et al. “Cauchy difference priors for edge-preserving Bayesian inversion with an
application to X-ray tomography”. arXiv preprint:1603.06135. 2016.
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Deconvolution once more

5 st 1
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Example: deconvolution with a BV prior
@ wu has countably many jump discontinuities.
lull gy ry < o0 a.s.'t
Lo is the measure induced by wu(t).

°
°
@ BV is non-separable.
@ Forward map is bounded and linear.
°

Well-posed problem.

1R, Cont and P. Tankov. Financial modelling with jump processes. Chapman & Hall/CRC
Financial mathematics series. CRC press LLC, New York, 2004.
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Closing remarks

@ Well-posedness can be achieved with relaxed conditions.
@ Gaussians have serious limitations in terms of modelling.

@ Many different priors to choose from.

47 /53



Closing remarks
@ Sampling.

@ Random walk Metropolis-Hastings
for self-decomposable priors.

o Randomize-then-optimize!?.

Posterior mean

o Fast Gibbs sampler'3.

0.04

0.02
05

True signal
Measurements

Posterior standard deviation

0 0.2 04 0.6 08 1 (b) Posterior standard deviation
X

127 Wang et al. “Bayesian inverse problems with I_1 priors: a Randomize-then-Optimize
approach”. arXiv preprint:1607.01904. 2016.

13F. Lucka. “Fast Gibbs sampling for high-dimensional Bayesian inversion”.
arXiv:1602.08595. 2016.
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Closing remarks

@ Analysis of priors:

o What constitutes compressibility?
o What is the support of the prior?

@ Hierarchical priors.

@ Modelling constraints.
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Thank you

B. Hosseini. “Well-posed Bayesian inverse problems with infinitely-divisible and
heavy-tailed prior measures”. arXiv preprint:1609.07532. 2016

B. Hosseini and N. Nigam. “Well-posed Bayesian inverse problems: priors with
exponential tails”. arXiv preprint:1604.02575. 2016
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Well-posedness

Minimal assumptions on ® (BH, 2016)
The potential ® : X x Y — R satisfies: 1415

(L1) (Lower bound in u): There is a positive and non-decreasing function f; : Ry — [1,00) so that
Vr > 0, there is a constant M (r) € R such that Vu € X and Vy € Y with |y|ly <,

(usy) = M —log (f1([Jullx))-

(L2) (Boundedness above): Vr > 0 there is a constant K (r) > 0 such that Vu € X and Vy € Y with
max{[|ul[x, [ylly} <7,
P(u;y) < K.

(L3) (Continuity in u): Vr > 0 there exists a constant L(r) > 0 such that Vu;,us € X andy € Y’
with max{{lus | x, uzllx, [lylly} <7,

[@(u1;y) — @(u2,y)| < Lllur — uz| x.

(L4) (Continuity in y): There is a positive and non-decreasing function f; : Ry — Ry so that Vr > 0,
there is a constant C'(r) € R such that Yy1,y2 € Y with max{||v1|ly, ||v2]ly} <7 and Yu € X,

[@(w;y1) — 2(u,y2)| < Cha(llullx)yr — vally-

15Stuart, “Inverse problems: a Bayesian perspective” .




The case of additive noise models

Well-posedness with additive noise models

Consider the above additive noise model. In addition, let the forward map G satisfy the
following conditions with a positive, non-decreasing and locally bounded function f > 1:
(i) (Bounded) There is a constant C' > 0 for which

IGw)s < Cf(lullx) VueX.

(i) (Locally Lipschitz) Vr > 0 there is a constant K (r) > 0 so that for all u;,us € X and
max{[|us || x, Juzllx} <7

1G(u1) — Gu2)|lz < Kljur — uz||x-

Then the problem of finding u¥ is well-posed if 1o is a Radon probability measure on X
such that f(|| - ||x) € LY(X, po)-
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